SYSTEM INTEGRATION – THE CENTER PIECE OF CARBON2CHEM®

Carbon 2 Chem®

Carbon2Chem Objectives & Challenges

System Integration

Carbon2Chem Assessment

Conclusions and final Remarks

© Fraunhofe

Carbon2Chem Objectives & Challenges

© Fraunhofe

The approach of Carbon2Chem is to create cross-industrial network by using CO₂ emissions

- Reduction of CO₂ emissions in steel production
- Development of a new raw material source for chemical production through the holistic use of C-sources
- Creation of cross-industry value chains
- Increase of energy efficiency by building a cross-industry network
- Making energy consumption more flexible and thus providing control energy to achieve the energy transition
- Use and integration of volatile and fluctuating renewable energy
- Production of chemical products with a higher added value than electricity or heat (e.g. methanol, ammonia etc.)
- Transfer of the results to other applications with an effect on energy system transformation

The approach of Carbon2Chem is to create cross-industrial network by using CO₂ emissions

The cross-industrial network has a significant share in the economy

Digitize: Total simulation Carbon2Chem

Challenges

System Dynamics	 Dynamic process gases (composition, amount) Volatile renewable energy
Green Hydrogen	Electrolysis (dynamic, capacity)Renewable energy
Gas Treatment	Amount of gasesMinor components
Synthesis	• Stability / durability

Carbon2Chem Objectives

System Integration

Carbon2Chem Assessment

Conclusions and final Remarks

Options in Steel Production

UMSICHT

Cross-industrial Network

Different integration schemes: Results for methanol production Global warming impact

- Products
 - ~ 0.3 5.8 Mt/a methanol and 8.4 Mt/a steel
- Power provided by wind
- Integrated production of steel and methanol shows smaller global warming impact compared to stand-alone production
- Results are strongly dependent on integration scheme

🖉 Fraunhofer

UMSICHT

GWI = Global Warming Impact WGS = Water Gas Shift NG = Natural Gas

Carbon2Chem Objectives

System Integration

Carbon2Chem Assessment

Conclusion and final Remarks

Comparison of CO₂ Emissions Reference: Steel (1 Mto) + Methanol (0,53 Mto)

Source: Wich-Konrad, Lüke, Deerberg; Chemie Ingenieur Technik; **2020**; Assessment of Industrial Greenhouse Gas Reduction Strategies Within Consistent System Boundaries

Energy demand

Source: Wich-Konrad, Lüke, Deerberg; Chemie Ingenieur Technik; 2020; Assessment of Industrial Greenhouse Gas Reduction Strategies Within Consistent System Boundaries

Energy Demand CCU, CDA: Mainly Green Power for Hydrogen Production

19 © Fraunhofer

Source: Wich-Konrad, Lüke, Deerberg; Chemie Ingenieur Technik; 2020; Assessment of Industrial Greenhouse Gas Reduction Strategies Within Consistent System Boundaries

Economy - all cost on Methanol !! – Sensitivity

Carbon2Chem Objectives

System Integration

Carbon2Chem Assessment

Conclusions and final Remarks

Conclusions so far

- Depending on Process Integration CO₂-Reduction up to approx. 50% is possible
 - Without general Changes in the Steel Production
- Essential: Renewable Energy Green Hydrogen
- Dynamics can be controlled
 - flexible and adaptive processes
- Costs are in reachable range, if green Hydrogen is excepted from shared costs
- Transfer of Carbon2Chem Approach to other Industries is to be considered
 - Other Steel production Sites
 - Cement Production
 - Waste Incineration
 - Combination with Direct Reducing Steel making Process (CDA)

Ore 🚎 ??? Mt CO2 Conventional Coal 600 Raw **Steel Production** Steel **Blast Furnace** 81 E Steel Natural Gas 100 ... 0% 40 - 20% Process 60 - 80% Gases ??? Mt Ore DRI Gas Treatment / 0...100% β**i**^mft **Gas Cleaning** Natural Gas ??? Mt CO, ΡV Hydro-Syn Fertilizer Gas gen ??? TWh Fuels Wind **Chemical Production** Electrolysis ??? Mt Chemicals Water

CCU & CDA: Combination with Direct Reducing Steel making Process

Final Remarks: Pathways for Reduction of CO₂ Emission

Carbon 2 Chem

Final Remarks: Pathways for Reduction of CO₂ Emission

Many thanks for your attention

Further information: https://www.umsicht.fraunhofer.de/carbon-cycle

Contact

Fraunhofer UMSICHT

Osterfelder Straße 3 46047 Oberhausen

Germany

E-Mail: info@umsicht.fraunhofer.de Internet: http://www.umsicht.fraunhofer.de

https://onlinelibrary.wiley.com/toc/15222640/2020/92/10

