CO₂ free steel production: Contribution of Carbon2Chem[®]and other routes

October 27th 2020 | Berlin | Dr. Arnd Köfler thyssenkrupp Steel Europe AG

engineering.tomorrow.together.

thyssenkrupp is committed to the 2015 Paris Agreement

195 <u><u></u> <2°</u>

countries

Joint efforts to limit global warming

2050 KLIMANEUTRAL CLIMATE NEUTRAL

2030 -30% CO₂ emissions

> 2050 Climate-neutral

Clear strategy: hydrogen for

climate-neutral steel

2026 onwards The melting unit

We will optimize the hot metal system using a new, electrically powered melting unit. The sponge iron from the DR plant will thus be liquefied for the BOF meltshop. In this way, we will replace the first coal-based blast furnace.

Avoiding CO - thydrogen path)

3m t

2024 onwards The milestone

Using a large-scale direct reduction plant (DR) which will be operated using green H₂ in the future, thyssenkrupp will produce sponge iron which will then be processed in the blast furnaces (BF), allowing a further reduction in emissions.

2019 - 2022 H2 in the blast furnace

We have been testing the use of hydrogen in a working blast furnace since 2019. The goal: The equipping of blast furnace 9.

Available quantity of climate-neutral steel (per year)

Using CO1 Caloon2 Chem®

2030 onwards

The scale-up

another melting unit.

We will replace another coal-

based blast furnace using a second, larger DR plant and

The world first

2018

Furthe

The concept: CO₂ becomes a raw material. In September 2018, thyssenkrupp produced methanol from steel mill gases for the first time at its Carbon2Chem® technical center in Duisburg.

2020 onwards

Industrialization

to produce base chemicals.

The pilot system at the Duisburg

steel plant uses steel mill gases

2050 onwards **Climate-neutrality**

We will produce our steel climate-neutrally in four DR plants and four melting units.

million t CO

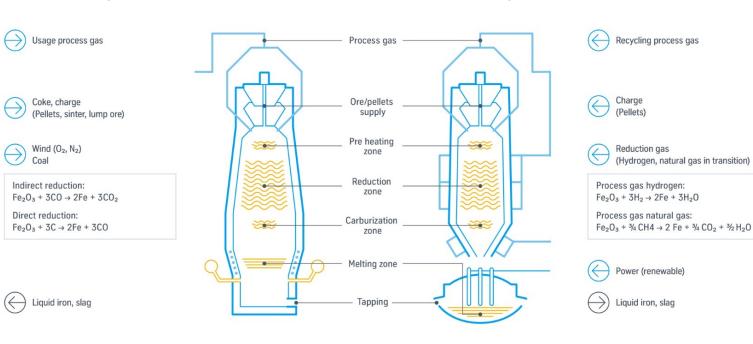
2025 onwards Large-scale production

We will use the unavoidable CO_2 as a raw material on an industrial scale. The Carbon2Chem® technology can also be used in other sectors, like the cement industry.

Core of CDA path:

Direct reduction plant with melting unit produces "electrical hot metal"

PROCESS INNOVATION WITH SUBSTANTIAL ECOLOGICAL AND ECONOMIC ADVANTAGES


- Innovation: First-time use of melting unit in ironmaking
- Technical innovation: Engineering of the melting unit
- Ecological advantage: Hydrogen and green power substitute coal and eliminate CO₂
- Electrical hot metal is used like hot metal, therefore all products can still be produced

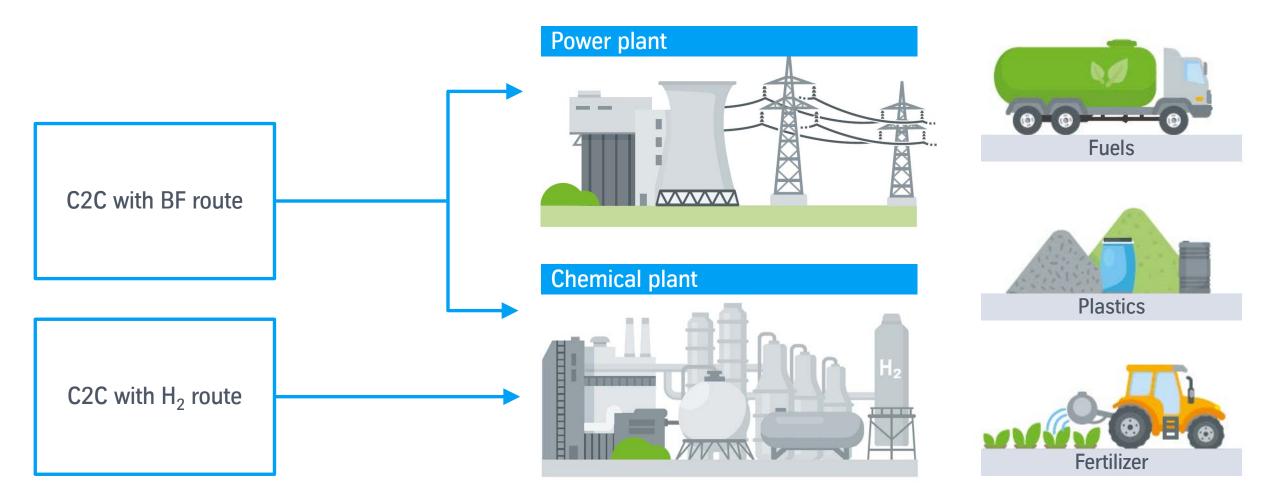
CONVENTIONAL BLAST FURNACE

Carbon as reducing agent and energy source

DR PLANT WITH MELTING UNIT

Hydrogen as reducing agent in DR plant Green power as energy source of melting unit

Some CO₂ emissions in steel making can't be prevented through CDA


RESIDUAL EMISSIONS MAY OCCUR FROM HYDROGEN PRODUCTION, USAGE OF NATURAL GAS AND DOWNSTREAM OPERATIONS

- Hydrogen: only green hydrogen is truly climateneutral and has to be available in sufficient amounts
- Natural gas: can bridge the time until green hydrogen can cover 100%, but comes with CO₂ emissions
- Downstream: BOFs, hot-rolling mills and other downstream units associated with CO₂ emissions

Carbon2Chem can absorb residual CO₂ emissions.

Carbon2Chem®fits all steel making paths

Achievements

- No barriers identified for technical implementation of methanol and ammonia synthesized with standard processes and catalysts from real metallurgical gases
- The economic efficiency of the project was confirmed by all industrial partners (milestone in the project)
- A positive environmental impact was also confirmed by all partners
- Industrial-scale feasibility possible around 2025
- Water electrolysis from tk UCE can be operated at high volatility and is therefore particularly suitable for hydrogen production and integration into the primary control energy market

First products

The technical and political framework conditions

Access to cheap

green hydrogen

Right political

framework conditions

are similar for CDA and CCU paths

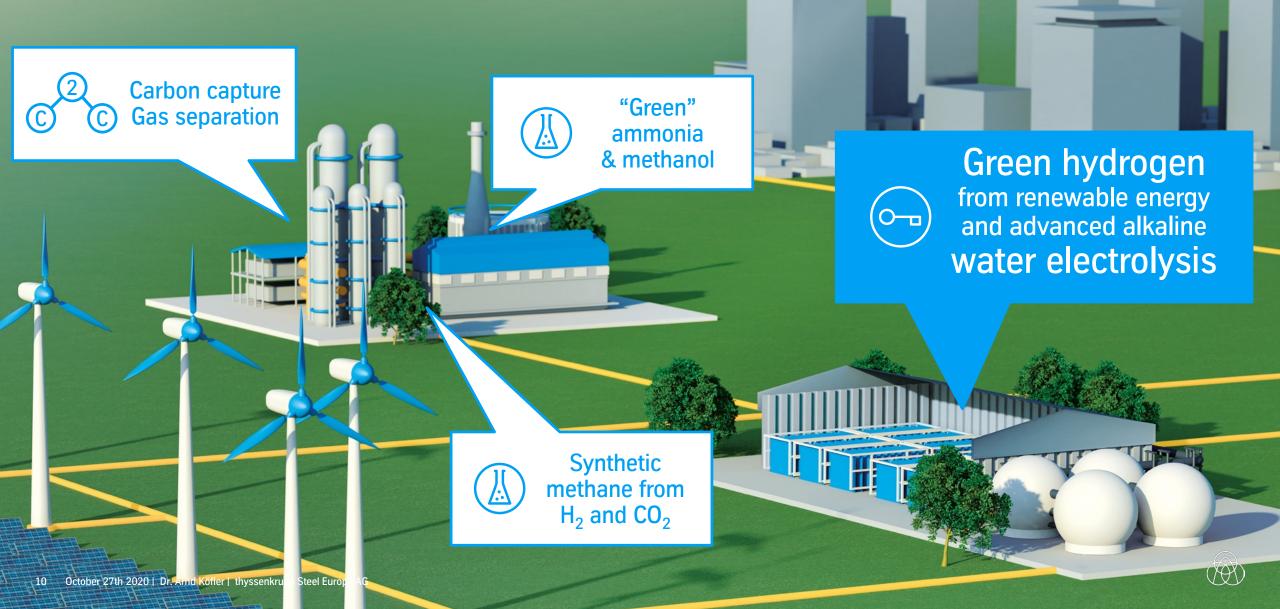
Access to renewable energy

October 27th 2020 | Dr. Arnd Köfler | thyssenkrupp Steel Europe AG

The demand for hydrogen will increase significantly

- Produced in existing industrial processes (e.g. refineries and chemical plants)
- Available, but causes CO₂ emissions

- Produced from natural gas
- Available in the medium term and climateneutral using offshore CCS



- Produced by electrolysis with electricity from renewable energies
- Climate-neutral
- Large quantities only available in the long term

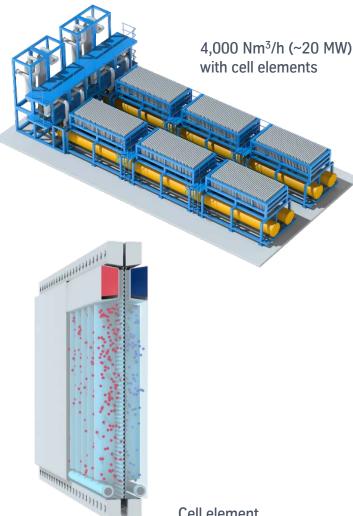
Complete climate neutrality in steel requires large amounts of green hydrogen.

Thyssenkrupp provides all key technologies under one umbrella

thyssenkrupp is the No.1 electrolysis supplier for industrial scale solutions

10 gigawatts

installed power (chlor-alkali electrolysis)


50 years expertise in design, construction and operation

> 1 gigawatt

of water electrolysis equipment capacity can be manufactured in Germany per year

> 600 plants

installed capacity worldwide (chlor-alkali electrolysis)

Reliable & proven technology

High efficiency

Fast dynamics to join the power market

Mass production, supply chain at scale

Funding and framework are decisive

for the transformation's success

- In general, we appreciate the stimulus program, hydrogen strategy, steel action plan and the EU's Green Deal
- The transformation needs adequate support and competitiveness has to be preserved
- Decisive: investments, operating costs, regulation and establishing green markets
- Production conditions in Germany must not deteriorate
- To be solved short-term:
 - EEG exemption for electrolysers
 - Inclusion of hydrogen as an energy carrier in EnWG
 - Contracts for differences; funding (e.g. IPCEI)

Thank you

for your attention!

FUNCTION OF STREET, S. S.

engineering.tomorrow.together.

HAR ALL THILLY I THE MALL

thyssenkrupp