#### LIFE CYCLE ASSESSMENT OF THE INTEGRATED PRODUCTION OF STEEL AND CHEMICALS

Berlin, October 28, 2020

Dr. Daniel Maga, Dr. Nils Thonemann, Dr. Markus Hiebel







#### **Goal and scope**

#### Goal

Comparative life cycle assessment of the integrated production of steel and chemicals in comparison to standalone production

#### Investigated scenarios

- Integrated production of steel and
  - Methanol
  - Urea
  - Higher alcohols
  - Methanol and polycarbonates



System boundary

Quelle: [MEV-Verlag]





# Handling of multi-functionality

Approach to compare stand-alone production of steel and chemicals with integrated production

#### System expansion

Functional unit covers steel and chemical production

| A               | landling of Multi-Functionality in Life Cycle<br>Assessments for Steel Mill Gas Based Chemical<br>Production                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ni              | ils Thonemann <sup>1,</sup> *, Daniel Maga <sup>1</sup> , and Cornelia Petermann <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| D               | DI: 10.1002/cite.201800025                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                 | Supporting Information<br>available online                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ga:<br>to<br>du | Fe cycle assessment is needed for quantifying potential greenhouse gas savings through material utilization of steel mil<br>ses. However, methodological guidance for this purpose is lacking. Therefore, the article presents different approache<br>handle multi-functionality. The investigation of steel mill gas based-methanol shows varying impacts on climate change<br>e to handling multi-functionality differently. System expansion is recommended for assessing cross-sectoral cooperation<br>d substitution as well as economic allocation for product-specific analyses. |
|                 | ywords: Carbon2Chem <sup>®</sup> , Life cycle assessment, Methanol synthesis, Multi-functionality, Steel mill gases                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Re              | ceived: March 29, 2018; revised: June 26, 2018; accepted: June 26, 2018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

#### Example of steel and methanol production





SMG = Steel Mill Gas = Natural Gas NG



### System boundaries of integrated steel mill

- Main inputs
  - Iron ore
  - Coal
  - Steam
  - Lime
  - Oxygen
- Produced steel mill gases (SMG)
  - Blast furnace gas (BFG)
  - Basic oxygen furnace gas (BOFG)
  - Coke oven gas (COG)



Folie 4 © Fraunhofer UMSICHT Thonemann, Nils; Maga, Daniel; Petermann, Cornelia (2018): Handling of Multi-Functionality in Life Cycle Assessments for Steel Mill Gas Based Chemical Production. In Chemie Ingenieur Technik 103 (2), p. 469. DOI: 10.1002/cite.201800025.



# System boundaries of integrated steel and chemical production

- Electricity from the power plant is used in integrated steel mill
- Additional electricity demand is supplied
  - by the grid mix in 2030 (ESDP\*)
  - by wind power (wind)







#### **Power supply**

- Data from Energy System Development Plan (ESDP)
  - tool to calculate energy generation, consumption, and conversion flows for a concrete national or regional energy system
  - Time horizon 2030
- Average Carbon
   Footprint ~ 0.5 kg CO<sub>2</sub>eq./kWh





#### Folie 6 © Fraunhofer UMSICHT

Thonemann, Nils; Maga, Daniel; Petermann, Cornelia (2018): Integration of Results from the Energy System Development Plan into Life Cycle Assessment. In Chemie Ingenieur Technik 23 (11), p. 11386. DOI: 10.1002/cite.201800117.



### Data basis for the life cycle assessment Process simulations

- 1. Process-technology model (PT)
  - precise modeling of the reactors links this model to a dynamic process simulation of the network
- 2. Co-Simulation (CS)
  - Iinks sub models of several academic and industrial partners within the Carbon2Chem<sup>®</sup> project via the internet to a cross-industrial network simulation
- 3. Process-logistics model (PLM)
  - mixed-integer linear programming model that focuses on the precise simulation of the management and supply of energy and materials between units





#### Investigated scenarios Main assumptions

- Basic assumptions for all simulation models
  - About 8.5 Mio. tons of steel mill gases (SMG) are directed to the Carbon2Chem<sup>®</sup> facilities and are avoided in the power plant of the integrated steel mill (BFG and COG)
  - No changes in the operation of the integrated steel mill
- Scenarios
  - Jumbo: 8.5 Mio. tons of SMG are directed to chemical production
  - Industrial: Only a small part of SMG is directed to chemical production, rest goes to power plant
  - COG max: The entire COG is used for chemical production
  - Watergas shift reaction (WGS): Additional reactor to shift CO to CO<sub>2</sub> and H<sub>2</sub> (higher yields vs. additional process unit)





### Functional unit in the case of methanol production

- The functional unit refers to the steel production in Duisburg in 2016 and the investigated scenario
  - 8.4 Mio. t steel per year
  - 0.3 5.8 Mio. t methanol per year
- Reference: Average methanol production mix of Germany
  - Synthesis gas for methanol production is produced by steam reforming and partial combustion







#### **Further assumptions**

- Emissions of the integrated steel mill are reduced by the use of steel mill gases
- Total CO<sub>2</sub> emissions of the integrated steel mill incl. prechains: approx. 17 Mio. t per year
- Avoided greenhouse gas emissions by utilization of SMG in Carbon2Chem<sup>®</sup> are calculated through 100 % conversion of SMG to CO<sub>2</sub>
- Steam produced in new power plant covers the entire steam demand of the integrated steel mill
- Not considered processes
  - Waste water treatment
  - Gas purification for watergas shift reaction
  - Catalysts
  - Transport of hydrogen





## Results for methanol jumbo scenarios (ESDP mix 2030) Global warming impact

#### Products

- ~ 4.1 4.4 Mio. t methanol and 8.4 Mio. t steel
- Jumbo scenario
- Different simulation tools lead to similar results
- Integrated production of steel and methanol shows higher GWI compared to stand-alone production



Fraunhofe

UMSICHT



### Results for methanol | Various scenarios (ESDP mix 2030) Global warming impact

- ~ 0.3 5.8 Mio. t methanol and 8.4 Mio. t steel
- Industrial scenario
  - Less methanol and less H<sub>2</sub> demand
- COG max scenarios
  - No external H<sub>2</sub> demand (similar to reference)
- WGS scenarios slightly better







### Results for methanol (Wind power) Global warming impact

- ~ 0.3 5.8 Mio. t methanol and 8.4 Mio. t steel
- Power provided by wind
- Integrated production of steel and methanol shows smaller global warming impact compared to stand-alone production







#### Results for urea Global warming impact

- ~ 10 Mio. t urea and 8.4 Mio. t steel
- Cooling was not modelled due to lacking data
- GWI of urea production smaller than reference
- In the case of ESPD, electricity contributes to approx. 65 % of the GWI
- GWI of urea production with wind power approx. 1/3 of GWI





- PT = Process-technology model
- CS = Co-Simulation
- PLM = Process-logistics model



### **Results for higher alcohols Global warming impact**

- 3.3 Mio. t petrol and 8.4 Mio. t steel
- Total hydration of alkenes to higher alcohols
- GWI of integrated production approx. 2 times higher than reference (ESDP)
- Only approx. 1/2 of GWI with wind power







### Results for polycarbonates and methanol Global warming impact

- Products
  - Methanol 1.5 Mio. t
  - NaOH 0.1 Mio. t
  - Polycarbonates 0.3 Mio. t
  - 8.4 Mio. t steel
- ESDP mix: 8 % higher than reference
- Wind power: 21 % smaller GWI







### **Comparison of Break-Even-Points**

- Urea production leads to the highest Break-Even-Point (BEP)
  - GHG savings can be achieved today
- Methanol & polycarbonate production associated with higher BEP as methanol alone
- Higher alcohol production related to a BEP of about 0.1 kg CO<sub>2</sub>eq./kWh





GWI = Global Warming Impact PC = Poly Carbonate



## Absolute GHG savings using wind power

Wind power

- Urea shows highest savings
- Methanol: Jumbo scenarios show much higher savings than industrial or COG scenarios
- Higher alcohols also lead to considerable savings
- Combination of PC and methanol can lead to higher GHG savings than methanol alone







### Interpretation (I)

- The integrated production of steel and chemicals allows GHG reductions compared to stand-alone production
- The global warming impact mainly depends on two drivers:
  - 1. Power demand for hydrogen production
    - Lowest hydrogen demand is needed for urea production, highest for higher alcohols
  - 2. The product yields
    - Urea production scenario has the highest product yield (mass balance) followed by methanol and higher alcohols





### Interpretation (II)

- The break-even-point is a suitable indicator to show at which carbon intensity of power generation the integrated production of steel and chemicals becomes beneficial
  - Depending on the target product and the production conditions, the BEP lies between approximately 0.2 and 0.5 kg CO<sub>2</sub>-eq./kWh
  - In 2019, the carbon intensity of the German power production was about 0.5 kg CO<sub>2</sub>-eq./kWh [Umweltbundesamt-2020]
  - For urea, already today GHG savings can be achieved
- In the case of using wind power all scenarios lead to GHG savings
  - Total GHG emissions can be reduced by 5 to 25 Mio. t CO<sub>2</sub> per year (one site)





#### LCA Publications in Carbon2Chem®

|                                                                                                                                                                                                                                                                            | Applied Energy 263 (2020) 114599 Contents lists available at ScienceDirect Applied Energy It homepage: www.elsevier.com/locate/apenergy D_2-based chemical production: A systematic                                                                                                                                                                                                                                                                                                                             | Chemie<br>Ingenieur<br>Technik       Research Article       1         Handling of Multi-Functionality in Life Cycle<br>Assessments for Steel Mill Gas Based Chemical<br>Production         Nils Thonemann <sup>1,*</sup> , Daniel Maga <sup>1</sup> , and Cornelia Petermann <sup>2</sup> DOI: 10.1002/cite.201800025         Supporting Information                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| literature review and meta-analysis M.A. Nils Thonemann Pravehofer Institute for Environmental, Sofety, and Energy Technology UMSSICHT, Gaserfelder Sr  Energy & Energy & Energy & Environmental Science  PAPER  Merical industry: Nils Thonemann@+** and Massimo Pizzol@b |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Image: Second |
| Nils Thonemann*<br>Sebastian Stießel<br>Daniel Maga<br>Boris Dresen<br>Markus Hiebel<br>Björn Hunstock<br>Görge Deerberg<br>Eckhard Weidner                                                                                                                                | Location Planning for the Production of<br>CO <sub>2</sub> -Based Chemicals Using the Example of<br>Olefin Production<br>A methodology for identifying suitable locations for the CO <sub>2</sub> -based production<br>olefins in Germany is presented. Based on electricity and CO <sub>2</sub> requirements, la<br>tions are identified that can provide sufficient CO <sub>2</sub> and renewable energy for<br>conversion of CO <sub>2</sub> to olefins. In addition, the use of existing infrastructures is | n of<br>oca-<br>the Development Plan into Life Cycle Assessment<br>Nils Thonemann <sup>1,*</sup> , Daniel Maga <sup>1</sup> , and Cornelia Petermann <sup>2</sup><br>DOI: 10.1002/cite.201800117                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |





### **Outlook on Carbon2Chem® Phase 2**

- Analysis of promising configurations
  - Also considering technical and economical limitations
- Analysis of further impact categories and trade-offs
- Consideration of further CO<sub>2</sub> sources
  - Cement plant, municipal waste incineration
- Comparison of CCU to direct reduction process for steel production
- Dynamic LCA-Model
  - Integration of LCA data into simulation tools to support decision making and plant control
  - Higher resolution of environmental footprint of CCU based chemical production
  - Identification of optimal solutions from an environmental point of view





# MANY THANKS FOR YOUR ATTENTION Looking forward to a good cooperation!

Present information on Life Cycle Assessment are available here: <u>https://www.umsicht.fraunhofer.de/en/research-for-the-market/life-cycle-assessment.html</u>

#### KONTAKT

Fraunhofer UMSICHT Osterfelder Straße 3

46047 Oberhausen Germany E-Mail: <u>info@umsicht.fraunhofer.de</u> Internet: <u>http://www.umsicht.fraunhofer.de</u>



Dr.-Ing. Nils Thonemann
Sustainability and Participation
Sustainability Assessment
<sup>∞</sup> +49 (0) 208-8598-1536
<sup>∞</sup> nils.thonemann@umsicht.fraunhofer.de





Dr.-Ing. Markus Hiebel Head of Department Sustainability and Participation Sustainability Officer <sup>™</sup> +49 (0) 208 8598-1181 <sup>™</sup> markus.hiebel@umsicht.fraunhofer.de





#### Thank you for your attention!





