INDUSTRIAL SCALE-UP IN CARBON2CHEM[®] – DESIGN OF TEST CAMPAIGNS WITH THE DEMONSTRATION PLANT

Tim Schulzke, Fraunhofer UMSICHT

Dr. Matthias Krüger, thyssenkrupp Industrial Solutions 3rd Carbon2Chem[®] Conference, October 27th-28th, 2020

AGENDA

Part 1: Matthias Krüger, tklS

- From laboratory to large scale plants: Problem definition and challenges during scale-up
- Summary of criteria for this project: towards the vision of a large scale Carbon2Chem[®] plant

Part 2: Tim Schulzke, Fraunhofer UMSICHT

- Results from experimental facilities with clean (bottle) gases and real steel mill gases (Phase 1)
- Design of test campaigns with demonstration plant

Slides of Dr. Matthias Krüger

For a personal copy of Dr. Krüger's slides (3-11) please contact:

Dr. Matthias Krüger, thyssenkrupp Industrial Solutions, Dortmund matthias.krueger@thyssenkrupp.com

Experimental facilities I

LCTS – Lab Catalyst Test Set-up

- Maximum operating conditons
 T = 400 °C, p = 100 bar
- Reactor \emptyset_i 9.7 mm; length 270 mm
- Catalyst key indicators ground commercial tablets sieve fraction 250 – 500 µm amount: up to 5 g
- Gas Feed
 4 feed gases (CO, CO₂, H₂, N₂)
 ~6 60 Nm³/(kg_{cat} h)

Experimental facilities II

- Maximum operating conditons
 T = 350 °C, p = 100 bar
- Reactor Ø_i 19 mm; length 1,100 mm
- Catalyst key indicators ground commercial tablets sieve fraction 1 – 3 mm amount: 20 – 100 g
- Gas Feed
 5 feed gases (CO, CO₂, H₂, N₂, Ar)
 ~5 10 Nm³/(kg_{cat} h)

Pilot plant

Experimental facilities III

Demonstration plant

- Maximum operating conditons
 T = 270 °C, p = 89 bar
- Reactor \emptyset_i 34.3 mm; Length \approx 6,000 mm
- Catalyst key indicators commercial tablets Ø 6 x 4 mm amount: ≈ 6.5 kg
- Gas Feed
 4 feed gases (CO, CO₂, H₂, N₂)
 ~5 Nm³/(kg_{cat} h)

Experimental facilities

UMSICHT

Commonalities and Differences

	LCTS	Pilot plant	Demonstration plant
T measurement	Reactor inlet + exit; 1 point in catalyst bed	16 points along reactor axis	36 points along reactor axis
T control	Electrical trace heating * Oil cooling jacket		Boiling-water cooling jacket
Plant set-up	Once	through * Gas recycle	Gas recycle
Catalyst	Commercial methanol catalyst		
Catalyst size	Fine powder	Fragments	Commercial tablets
Online analysis, sample point	Reactor outlet		Condenser outlet
Online analysis	GC-MS/FID/TCD	GC-FID/TCD	TCD (H ₂) NDIR (CO, CO ₂ , CH ₄ , C ₂ H ₄)
Reaction regime	Primarily kinetic	Primarily kinetic; additionally equilibrium	equilibrium
Object of investigation	Catalyst performance; reactor model validation		Plant performance; plant model validation
© Fraunhofer UMSICHT * W	ill be modified in phase 2	thyssenkrup	5 🗾 Fraunhofer

Results from Phase 1

UMSICHT

Benchmark tests

Comparison of different test set-ups operated by different consortium partners

 \Rightarrow good overall consistency

Definition: Carbon Oxide Ratio $COR = CO / (CO + CO_2)$

Benchmark: COR = 13.5 / 17 = 0.79

濍 Fraunhofer thyssenkrupp

Results from Phase 1

LCTS, bottle gases

73.5 % H2, 9.5 % N2

280 °C, 50 bar

💹 Fraunhofer

UMSICHT

thyssenkrupp

Results from Phase 1

© Fraunhofer UMSICHT

Results from Phase 1

Pilot plant, bottle gases

Scenario comparison

 $SN \approx varying$

Demonstration plant modification

- Operation at UMSICHT in Oberhausen with
 - changing ratio of CO / CO_2 (originally designed for pure CO_2)
 - changing addition of N₂ to makeup gas
 - changing recycle ratio and makeup gas flow rate
 - \Rightarrow Determination of operating window
- Application for building permit at Carbon2Chem test facility in Duisburg
- Relocation of demonstration plant to Duisburg

© Fraunhofer UMSICHT

Design of campaigns at steel mill

process design commercial plant

🛞 thyssenkrupp

Carbon 2 Chem®

Summary

- Scale-up is a complex topic, not straight forward
- Carbon2Chem partners are experienced with successful scale-up
- First basis for scale-up is longterm stability of lab and pilot plants and experimentally validated reaction / reactor / plant models
- Stepwise transfer of results and campaigns to larger plants towards the vision of Carbon2Chem first-of-its-kind plant

INDUSTRIAL SCALE-UP IN CARBON2CHEM® – DESIGN OF TEST CAMPAIGNS WITH THE DEMONSTRATION PLANT Tim Schulzke, Fraunhofer UMSICHT Dr. Matthias Krüger, thyssenkrupp Industrial Solutions 3rd Carbon2Chem® Conference, October 27th-28th, 2020

