

Annual Report 2006

Fraunhofer Institut Umwelt-, Sicherheits-, Energietechnik UMSICHT

CONTENT

The Institute

Preface	Δ
Highlights 2006	- 6
The Fraunhofer Institute for Environmental Safety and Energy Technology LIMSICHT	Q Q
Eacts and Figures	0
Key Desearch Areas and their Inneuration Areas	9
Key Research Areas and their innovation Areas	10
Reorganization 2006: Structure Follows Strategy	12
Organizational Chart	13
Business Units and Infrastructure	14
In Dialogue with DrIng. Stephan Kabasci	20
Training Center/Fraunhofer Technology Academy	22
Marketing, Communication, Business Development and IT Management	23
Library – Specialist Information Service and Central Technical Services	24
Branches Willich and Teterow	25
Laboratories of Fraunhofer UMSICHT	26

Business Unit Renewable Resources

Development of a microbial quick-test for the identification of inhibitors in anaerobic digestion processes	30
New laboratory capacities for research – FNR Junior Scientists Group takes on work	32
Efficiency improvement of biogas plants through continuous biogas analysis	34
From the field to a successful product: Corn starch foam	36

Business Unit Process Technology

40
42
44
46

Business Unit Biofuels

Innovative biodiesel production	50
OILPRODIESEL: Production and utilization of biodiesel from used frying oils in Oeiras (Portugal)	52
Business Unit Advanced Materials	

Swellable thermoplastic elastomer composites: New material basis excels in tests	56
Evaluation of cutting, breaking, and wear processes via DEM and FEM	58
scCO ₂ (supercritical carbon dioxide) – Material research under pressure	60
Production of thermoplastic nano-composite materials and characterization of their surfaces	62

Business Unit Information Technology in Process Engineering

Systematic network analysis using LANrunner [®]	66
Hazardous material management and information system GEVIS II	68
Keeping an eye on all data with DAVID (Data Acquisition and Visualization Device)	70
Hazardous material storage – Optimization of logistics and security	72

Business Unit Energy Technology

Waste to energy/Biomass to energy	76
Treatment and utilization of biogenous, low BTU gases for decentralized electricity generation	78
Combustion of low BTU gases in microturbines	80
Emission trading at Fraunhofer UMSICHT	82

Business Unit Energy Systems

Energy efficiency in hospitals	86
Decision support for energy management	88
Cold from heat	90
Storing energy efficiently	92

Business Unit Resources Management

European Waste Sector Assistant EUWAS – Knowledge and information for waste management in a "one-stop-shop"	96
Potential study: The path to individual decisions	98
BioRegio: Strategies for the sustainable energetic utilization of biomass in chosen model regions	100
Network for gas treatment technologies and processes "ReGasNet"	102

Names, Data, Events

Publications	106
Selected Clients and Contacts	107
Patents	110
Spin-offs	111
Circle of Friends and Patrons	111
How to Find us	112
Guidelines	113
The Fraunhofer-Gesellschaft	114
Board of Trustees	115
Imprint	116

Preface

"There is only one proof for ability – action (Marie von Ebner-Eschenbach)

And as a matter of fact we also did a lot – the year 2006 was a busy and dynamic "year of change", full of action.

During a reorganization process, the profile of the institute was focused on a future concept, along our four key research areas "Biorefinery", "matfunc", "Modular energy technologies", and "Information networks for process and energy technologies". The new organizational chart reflects a new efficient, customer-oriented institute that concentrates R&D activities on growing markets and creates plenty of space for new ideas. We transfer our key research areas particularly into four innovation fields which are the mainspring for a sustainable growth of the institute. With "C4-chemistry based on renewable resources", "biofuels", "impregnation" and "polygeneration", the accent has been put on new promising research lines to position the institute in the research landscape.

Our action program covers also and in particular the successful organizing of events, which over the recent years have become one of our trademarks. In autumn 2007, our facilities will be complemented by a new building, the renovated former Thyssen building which will allow in-house events on a larger scale.

Not only Fraunhofer UMSICHT but also the Fraunhofer-Gesellschaft builds upon the enhanced implementation of white biotechnology in industrial production. The conference "Bio-raffiniert III" was an international forum to discuss the utilization of renewable resources in biorefineries. The target is to produce 20 percent of all chemicals, materials, and fuels from renewable resources by 2020.

Further innovative impulses have been given on our conference on "The future of materials"

which presented the development of materials in the conflicting fields of functionality, sustainable growth and design. Under the slogan "Think and Talk Future", a broad interdisciplinary range from Martin Heidegger to Perry Rhodan was spanned to serve as forum for guests from most varying scientific areas to discuss the role of new materials for new concepts of living and working environments.

Fraunhofer UMSICHT's commitment is also required in the 7th Research Framework Program of the European Union. It is one of our missions to strengthen Europe's scientific and technological fundament to enhance the development of Europe's international competitiveness. We will follow our strategy to actively participate in shaping current research programms also with the 7th Research Framework Program and hope that this will result in a number of successful projects.

Our optimistic outlook relies on the tireless commitment, enthusiasm and know-how of our staff to whom we are particularly indebted. With pride we may claim that we have been acknowledged as one of the model family-friendly enterprises of 2006 in Oberhausen - we are convinced that family and job requirements must be adjusted to each other to ensure a well motivated and satisfied staff. We also wish to express our thanks to our partners and customers from industry and research, in the State and Federal Ministries and the members of the Board of Trustees and the Circle of Friends and Patrons. We hope that reading our annual report will be entertaining and stimulating and we hope that this will increase your trust in the competencies of Fraunhofer UMSICHT.

We wish you an inspiring read!

chhard likiduer

Eckhard Weidner

Joyelalun

Görge Deerberg

Highlights 2006

April 2006

The Girls' Day is supposed to give an overview on those professions which are not among the traditional preference of young girls. At Fraunhofer UMSICHT we took this occasion to deliver a first insight into engineering disciplines, information technologies and technical design (CAD). The photograph shows Mandy, Annika, Tamara and Sina who enjoyed performing the sieving analyses and the following evaluation.

August 2006

Sunshiny sky and smiling faces when Dr. Jens Baganz, State Secretary of the Ministry for Economic Affairs, and Energy of North Rhine-Westphalia (in the middle) was welcomed by Prof. Eckhard Weidner and Dr. Christian Dötsch (from left to right). Talks were held on energy efficient technologies.

September 2006

In September, over 120 visitors came together in the Rheinisches Industriemuseum Oberhausen, at a conference organized under the slogan "Think and Talk Future", in order to exchange opinions on the latest solutions in the fascinating world of plastics, metal, wood, glass and co. New ideas of how materials will be developed and utilized in the world of tomorrow were discussed among historians, scientists, engineers, industrial designers, experts in social sciences, linguistics and science fiction authors.

Oktober 2006

At the Entsorga-Enteco Fair 2006, Dr. Thomas Marzi presents the new shape of the "Modular incineration plant with Reduced Flue Gas Cleaning Residues" MARS® to the Minister of Environment and Conservation, Agriculture and Consumer Protection of North Rhine-Westphalia. This pilot plant offers perspectives for the energetic use of high and mediumsized calorific wastes to North Rhine-Westphalian small and medium companies in the waste disposal sector with a high energy demand.

November 2006

The boosting Indian economy and the target set by the Indian Government for 2012 to guarantee the nation-wide supply of electric power, require considerable investment in the Indian energy sector. Shri Vinay Vilasrao Kore, Minister for Renewable Energy of the State of Maharashtra, visited UMSICHT to learn about local energy generation from biomass.

Alteration 396 or Oheekee

Dezember 2006

Job and family are well compatible at Fraunhofer UMSICHT. On December 6, 2006 the mayor of Oberhausen, Klaus Wehling, "awards the prize for exemplary familyfriendly enterprises of Oberhausen 2006" to UMSICHT. We are very happy about having received this award – it shows that we are well on our way.

The Fraunhofer-Institute for Environmental, Safety, and Energy Technology UMSICHT in Profile

Fraunhofer UMSICHT develops applied and custom-made process engineering technologies. Assuming a leading position in the fields of environmental and material technologies, process engineering and energy technology, Fraunhofer UMSICHT is committed to sustainable economic development, environmentally friendly technologies and innovative approaches designed to improve the standard of living and to promote the innovation capacity of the national economy.

To strengthen its position in the research landscape, the institute has focused its activities on four key research areas, these are:

- "Biorefinery Products from Renewable Resources",
- "matfunc Particles, Materials and Membranes with Functionality",
- "Modular Energy Technologies Flexible Solutions for Sustainable Energy Systems",
- "Information Networks for Process

and Energy Technology – Utilizing Dispersed Knowledge in Value Added Chains"

This thematic scope is designed to give interdisciplinary scientific impulses across the business units. It is in these key areas that the institute's profile is adapted to the rhythm of social and economic changes and focused on promising new lines of research.

Eight specialized business units represent the precisely tailored combination of products and R&D services responding to today's challenges of the market segments addressed. Modern project management methods are used to successfully realize innovation projects. The key research areas are thus continuously adapted to changing demands in a "bottom up" way.

Together with industrial and public customers, Fraunhofer UMSICHT develops and researches the latest

know-how and transfers it into industrial applications and marketable products. No matter whether the customer is a small or medium-sized enterprise, a major enterprise or a public institution, UMSICHT can guarantee a one-stopshop service.

Starting from the project idea over proposal procedures to the development and market introduction, Fraunhofer UMSICHT offers its clients R&D expertise and thus provides them with competitive benefits and opens up international markets for them.

As a member of the Fraunhofer-Gesellschaft, the institute follows the line of applied, cutting-edge research and development.

Since its foundation in 1990, Fraunhofer UMSICHT has been engaged in the structural change of the city and the region acting as a catalyst for science and economy. This has been done through technology transfer, spin-offs and the set-up of R&D networks. The institute's international activities presently focus on European countries.

Facts and Figures Ard Figures

Staff

Staff at Fraunhofer UMSICHT 2006

Number

Permanent Staff	144
- Scientists and engineers	94
- Technical infrastructure	28
- Central services	22
Other Staff	124
- Postgraduates	11
- Undergraduates	13
- Student assistants	52
- Interns, guest scientists	37
- Trainees	11
Total Staff	268

Structure of staff at Fraunhofer UMSICHT

Expenditure and returns

Expenditure 2006	(m €))
------------------	-------	---

Operational Budget	17.7
- Staff costs	7.8
- Other costs	9.9

Investments	3.1

Returns Operational Budget 2006	(m €)
---------------------------------	-------

Total Returns	17.7
- Basic funding	6.8
- Others (EU, communities)	0.5
- Public returns	3.0
large enterprises	1.4
small and medium-sized enterprises	6.0
- Industrial returns	7.4

Development of the operational budget since the establishment in the year 2000

Key Regreberendinnersatind air finovation areas

Fraunhofer UMSICHT: Our key research areas and innovation areas

Growing resource conflicts, a flood of information and knowledge, aging societies, globalization, and climate change are all factors that influence our society and markets. Fraunhofer UMSICHT meets the challenge of ever faster growing changes with its key research areas and innovation areas.

Four key research areas form the basis of the technological positioning of the institute within the German and international research landscape. Their thematic scope is designed to give interdisciplinary scientific impulses across the business units. With them, the profile of the institute is adapted to the rhythm of economic and social change and focused on promising research directions. Selected focuses of research with a high innovation potential – the innovation areas – form the building blocks of the expandable and developable technological architecture of Fraunhofer UMSICHT.

Key research area "Biorefinery"

Products from Renewable Resources

We strive to achieve that 20 percent of chemicals, materials and fuels are made from renewable materials in the year 2020. Projects focus on new technologies for the production of biodiesel including the utilization of residues and by-products, the production of diesel and ethanol from biomass as well as the development of bioplastics. Laboratories for the development of bioprocesses, downstream processing and for the production of plastic products form the basis for this work.

Innovation area "C4-chemistry on the basis of renewable resources"

In this innovation area the focus is put on the development of a process chain from the starch containing raw material via succinic acid synthesis up to application and product development.

• Innovation area "biofuels"

The newly established business unit "Biofuels" has set the objectives to optimize biodiesel syntheses, to pyrocatalytically produce carbohydrates from biogenous waste fats and to thermochemically synthesize ethanol from lignocellulose biomass.

Key research area "matfunc"

Particles, Materials and Membranes with Functionality

Our vision that even the smallest particles can be produced in any defined shape, and that complex structures, layers, and components can emerge through self organization is defining the path to the future. We develop intelligent materials and systems with functionalized surfaces which pave the way for new applications with properties that cannot be predicted yet. The installation of a particle synthesis laboratory as well as a membrane and microsieve laboratory forms the basis for this work.

Innovation area "impregnation"

By using supercritical fluids we functionalize inner surfaces of heterogenous matrices as well as of homogenous, swellable materials and components with the aim of substituting organic solvents and creating products with improved properties.

Key research area "Modular Energy Technologies"

Flexible Solutions for Sustainable Energy Systems

Sustainable energy supply is vital for the growing world population. Decentralized plants, energy efficiency and renewable energies are our answers for the changing energy markets.

We are backing energy from biomass and residues, the utilization of low BTU gases, landfill and sewage gas, biogas feed-in, polygeneration processes, combined heat, cold and power plants (CHCP), organic rankine cycle processes (ORC) and ambient cooling.

This is our contribution to keep energy costs under control, ensure energy supply and to protect the climate.

Innovation area "polygeneration"

In this innovation area we focus on the development of energy concepts for an efficient energy conversion. We concentrate on organic rankine cycle, thermally driven chillers and energy storage media for power and cold.

Key research area "Information Networks for Process and Energy Technology"

Utilizing Dispersed Knowledge in Value Added Chains

In complex production systems the amount of information concerning business processes, organizational procedures, technical and scientific processes in plants and apparatuses is continually expanding.

We are doing our share to make the vision come true that structured knowledge which is needed to solve complex technical problems can be provided at any place and at any time.

For this purpose we develop techniques and systems that can be used during the planning and operation of modern complex production systems.

For further information please refer to http://www.umsicht.fhg.de/englisch/profil/leitthemen/

Reorganization 2006. Structure follows strategy

With the reorganization process in 2006, UMSICHT has created the basis for a sustainable growth oriented strategy. The thematic-strategic change become evident above all in defining key research areas, which has entered into the project phase at the beginning of 2006. Selected key areas with high innovation potential are to ensure staff budgets for a longer period of time. Thus, to be consistent, the strategic change entailed an organizational change. Dr.-Ing. Görge Deerberg was appointed "Deputy Director", a position newly created to support the Director.

The business units as the scientific and economic mainstay of the institute are positioning their offer on the R&D market and compete with other players for profitable orders. Innovation fields and key research areas of the business units are geared to enabling a solid growth.

Five of the established business units have been maintained after refocusing their profiles.

- "Renewable Resources"
- "Process Technology"
- "Advanced Materials"
- "Energy Technology"
- "Energy Systems"

Three new business units have been created to address innovation topics generated by the key research area definition process. They have the potential for future growth:

- "Biofuels"
- "Information Technology in Process Engineering"
- "Resources Management"

The infrastructure departments develop, apply and transfer methodological approaches which form the basis of the research work. The operative business is to be integrated fully into the business units. Fraunhofer UMSICHT builds on stable and reliable cooperation partners in order to enhance the initiation and realization of projects and to integrate additional competencies. Therefore, the field of "networks" is included in the organizational set-up.

Reorganization is no end in itself but a blueprint of the future of Fraunhofer UMSICHT. The new organizational structure represents a market- and customer-oriented institute which focuses its R&D services on growing markets and leaves a lot of room for new ideas. The new structure is supposed to offer our staff "areas of common interest", which stimulate the creation of new ideas open up new perspectives and help to make work inspiring in interdisciplinary teams.

Organizational Chart Organizational Chart

Directorate						
Pro	f. DrIng. Eckhard Weidner Director	DrIng. Görge Dee Deputy Director	rberg			
Business Units						
Description Description	Decese Technology	Disfusio				
DrIng. Stephan Kabasci Deputy: DiplIng. Carmen Michels	DrIng. Görge Deerberg Deputy: DiplIng. Josef Robert/	DrIng. Axel Kraft Deputy: N.N.	DiplIng. Jürgen Bertling Deputy: Dr. rer. nat. Holger Wack / DiplIng. Marris Berbherger			
Bioengineering Chemical Conversion Plastics Technology	Downstream Processing Water and Wastewater Technology Multiphase Reaction Technology	Catalytic Processes Refinery Concepts Industrial Chemistry of Oils and Fats	Polymeric Compounds and Components Functional Particles and Composites Hydrogels, Wood and Leather			
Information Technology in Process Engineering DiplPhys. Thorsten Wack Deputy	Energy Technology Dr. rer. nat. Thomas Marzi (temp.)	Energy Systems DrIng. Christian Dötsch Denuty	Resources Management DrIng. Hartmut Pflaum			
Dipling. Andreas Schröder Information and Knowledge Management Environmental and Safety Law Server Based Computing	 Refuse Derived Fuels and Biomass Biogenous Low BTU Gases Coal Mine Methane (CMM) 	Dring. Wilhelm Althaus Optimization of Energy Systems Polygeneration Cooling Technologies	Dipl-Wirt-Ing. Markus Hiebel MSc Material Flow Management Networks/Supply Chain Management Innovation Processes			
Networks Infrastructure						
Development and Demonstration Centers University Cooperations	Branch Teterow DrIng. Görge Deerberg Deputy: DiplIng. Toralf Goetze Rotary Kiln Pilot Plant	Administration DiplBetrw. Andreas Weber Deputy: Kerstin Schade Finances/Controlling/Contracts Human Resources Development Library	Marketing, Communication, Business Development DrIng. Hartmut Pflaum Deputy: DiplChem. Iris Kumpmann Marketing/PR/Strategy IPR/Licensing International Projects/EU			
Board of Trustees						
Circle of Friends and Patrons	Branch Willich DiplIng. Carmen Michels Deputy: DiplIng Thomas Eisenburger Plastics Pilot Plant	IT Management DiplIng. Andreas Schröder Deputy: DiplInform. Christian Knermann Network Management Individual IT-Infrastructure Management of Measuring Data	Central Technical Services DiplIng. Richard Sprick Deputy: DiplIng. Joachim Hillers Pilot Plant Stations and Workshops Construction/CAD Operational Center			
	Fraunhofer Technology Academy/Training Center DiplIng. Anja Gerstenmeier	Chemical Laboratory DrIng. Edda Möhle Deputy: Dr. rer. nat. Anna Fastabend	Occupational Safety and Environmental Protection DrIng. Ulrich Seifert Deputy: DiplIng. Jürgen Stein			
	infernum	Anorganic Analysis Organic Analysis Development of Methods	Consulting and Coordination Safety Analysis and Checks Approval Procedures			

Business Units/Infrastructure

Fraunhofer UMSICHT presents itself in the market for applied research with eight business units. These business units represent the taylor-made combination of products and R&D services with the requirements of the respective business segments. They apply modern methods of project management and realize successful innovation projects. At the same time they use research and science to advance the institute's key research areas "bottom up". The knowledge basis for maintaining and extending our core competencies lies within the business units.

Successful research and development demand good service and adequate management – externally as well as internally! That is the reason why we make allround servicing that our business units profit from available to our customers as well.

RENEWABLE RESOURCES

Dr.-Ing. Stephan Kabasci Phone: +49 2 08/85 98 -11 64 Fax: +49 2 08/85 98 -14 24 stephan.kabasci@umsicht.fraunhofer.de Information/secretariat: +49 2 08/85 98 -12 27

Bioengineering

Fermentative synthesis of valuable material; downstream processing; microbial biomass utilization, extract production; biogas production; biological wastewater, waste air and solid waste treatment; testing of compostability of plastic products; enzymatic syntheses

Chemical Conversion

Platform chemicals, monomers and polymers from renewable resources; hydrogenation; analytics (IR, TG, DSC, GC, HPLC, GPC, viscosimetry); biorefinery systems

Plastics Technology

Material development: polymers from renewable resources, biodegradable polymers, wood fiber reinforced compounds, tailor-made blends; compounding; injection molded or extruded prototypes, small scale production; material and component characterization; thermochemical and spectroscopic analysis

Dr.-Ing. Görge Deerberg Phone: +49 2 08/85 98 -11 07 Fax: +49 2 08/85 98 -12 90 goerge.deerberg@umsicht.fraunhofer.de Information/secretariat: +49 2 08/85 98 -12 82

Downstream-Processing

Process development; biorefinery; process development for membranes, microsieves and thermal separation processes; process media cleaning; processing of fermentation solutions; phyto materials; sample batch processing

Water and Wastewater Technology

Valuable material recovery; acid processing; closing of water cycles; decentral water and wastewater technology; degermination; pipeline technology; network and cavitation hammer simulation

Multiphase Reaction Technology

Process development and optimization of multiphase processes in chemical and biotechnology; process intensification; process modeling and simulation; optimization; CFD; reaction calorimetry; sample batch production

BIOFUELS

Dr.-Ing. Axel Kraft Phone: +49 2 08/85 98 -11 67 Fax: +49 2 08/85 98 -12 95 axel.kraft@umsicht.fraunhofer.de Information/secretariat: +49 2 08/85 98 -12 82

Catalytic Processes

Catalytic-pyrolytic conversion of biogenous fats, oils, and waste fats into biogenous diesel; guanidine carbonate as catalyst for the catalytic transesterification of triglycerides with methanol

Refinery Concepts

Integrated utilization of oil plants or oilseed, separation and processing of byproducts (partial glycerides), glyceride-utilization paths, e.g. by pyrolytic conversion

Industrial Chemistry of Oils and Fats

Deacidification processes for crude oils of different type and origin, extraction of minor components from crude oils, thermo-catalytic conversion of fat or oil containing raw or waste material into hydrocarbon fractions

Annual Report 2006

15

ADVANCED MATERIALS

16

 Dipl.-Ing. Jürgen Bertling

 Phone:
 +49 2 08/85 98 -11 68

 Fax:
 +49 2 08/85 98 -14 24

 juergen.bertling@umsicht.fraunhofer.de

 Information/secretariat:
 +49 2 08/85 98 -12 27

Polymeric Compounds and Components

Compounding of technical polymers (TPU, TPE, POM, PBT, PA, PP); fields of application: tribology, sealings, coatings, injection molded powder sintered components; processing technologies: melt mixing, injection molding, profile and foil extrusion, rapid prototyping, powder spraying, fluid bed sintering, comminution and granulation, high pressure spraying, impregnation

Functional Particles and Composites

Production of microcapsules, micro hollow spheres, nano and micro particles, hydrogel particles as carrier systems; biomimetic material concepts (tribology, self-healing); polymers equipped with indicators, latent heat storage (PCM) systems, materials equipped with aroma, effect pigments; FEM and DEMsimulations

Hydrogels, Wood and Leather

Switchable hydrogels; self-repairing sealing systems; volume impregnation of porous and non-porous materials, extraction and decontamination of wood; leather tanning with supercritical carbon dioxide

INFORMATION TECHNOLOGY IN PROCESS ENGINEERING

Dipl.-Phys. Thorsten Wack Phone: +49 2 08/85 98 -12 78 Fax: +49 2 08/85 98 -14 25 thorsten.wack@umsicht.fraunhofer.de Information/secretariat: +49 2 08/85 98 -11 74

Information and Knowledge Management

Information logistics; data acquisition; data consolidation; visualization; customized user interfaces; database architectures; business intelligence; process logic; local-based information providing

Server Based Computing

Application service providing; operational concepts; service oriented architectures; role concepts; access technologies; terminal equipment

Environmental and Safety Law

Legally compliant structural and operational organization, sustainable company documentation; hazardous substance management and information; guidelines; authorization procedure; safety analyses and concepts

ENERGY TECHNOLOGY

Dr. rer. nat. Thomas Marzi Phone: +49 2 08/85 98 -12 30 Fax: +49 2 08/85 98 -14 23 thomas.marzi@umsicht.fraunhofer.de Information/secretariat: +49 2 08/85 98 -12 70

Refuse Derived Fuels and Biomass

Combustion, gasification (e.g. of wood, RDF, sewage sludge), fluidized bed technology, grate firing systems, refuse derived fuels, fuel characterization, development of "waste to energy" concepts

Biogenous Low BTU Gases

Biogas feed-in into gas networks, catalytic and adsorptive cleaning, development of selective adsorbents, "oxygen separation", analytics, mobile test rigs for on-site development, efficiency analysis, landfill gas utilization, burner technology

Coal Mine Methane (CMM)

Innovative combustion technologies, CHPs, danger defense, emission trading, active environmental protection, process development, oxygen enrichment with membranes

ENERGY SYSTEMS

 Dr.-Ing.
 Christian Dötsch

 Phone:
 +49 2 08/85 98 -11 95

 Fax:
 +49 2 08/85 98 -14 23

 christian.doetsch@umsicht.fraunhofer.de

 Information/secretariat:
 +49 2 08/85 98 -12 70

Optimization of Energy Systems

Energy analyses; simulation and optimization of heat, cold and electricity supply systems; planning models for electricity and CO₂trading; risk management (deciding under uncertainty); energy benchmarks; low exergy energy systems; integration of renewable energy sources; local energy management; CO₂-monitoring

Polygeneration

Combined heat, power and cold generation/trigeneration; electricity storage systems; low temperature power generation; organic rankine cycle; waste heat utilization

Cooling Technologies

Thermal cooling processes: steam jet ejector chillers, absorption chillers; solarthermal chillers: air conditioning, product cooling; application of advanced fluids, high-performance coolant (PCS, ice slurries) and latent heat storage media (PCM/PCS)

RESOURCES MANAGEMENT

Dr.-Ing. Hartmut Pflaum Phone: +49 2 08/85 98 -11 71 Fax: +49 2 08/85 98 -12 89 hartmut.pflaum@umsicht.fraunhofer.de Information/secretariat: +49 2 08/85 98 -11 22

Material Flow Management

Optimization of material and energy cycles; recycling concepts, benchmarking of technical systems with key figures; cost-benefit analyses for decision support; ecological and economic optimization of waste management networks, identification and assessment of biomass potential, scenario analyses, sustainability management

Networks/Supply Chain Management

Analysis and optimization of material flow and energy flow systems, location planning and optimization, optimization of technical and infrastructural processes, master plans for decision support, development and management of network projects

Innovation Processes

Innovation and knowledge management, brainstorming and realization of ideas, development and monitoring of innovation processes, market research and analyses, technology trends, roadmaps, marketing/PR, IPR and licence strategies

ADMINISTRATION

Dipl.-Betrw. Andreas Weber Phone: +49 2 08/85 98 -12 26 Fax: +49 2 08/85 98 -12 90 andreas.weber@umsicht.fraunhofer.de

Budgeting; finance and controlling; financial project monitoring; accounting; personnel planning, recruitment and development; organization of business trips; contract management; equipment management; purchasing; library; infrastructure

CENTRAL TECHNICAL SERVICES

MARKETING, COMMUNICATION, BUSINESS DEVELOPMENT

Dr.-Ing. Hartmut Pflaum Phone: +49 2 08/85 98 -11 71 Fax: +49 2 08/85 98 -12 89 hartmut.pflaum@umsicht.fraunhofer.de

Dipl.-Chem. Iris Kumpmann Phone: +49 2 08/85 98 -12 00 Fax: +49 2 08/85 98 -12 89 iris.kumpmann@umsicht.fraunhofer.de

Innovation management and marketing; business area planning; market and technology studies; composition and layout of printed media; media work; press and public relations; information medium internet; marketing concepts; strategy; property rights; international project development/EU

CHEMICAL LABORATORY

Dipl.-Ing. Richard Sprick Phone: +49 2 08/85 98 -11 82 Fax: +49 2 08/85 98 -14 25 richard.sprick@umsicht.fraunhofer.de

Plant construction; project management; basic and detail engineering; sampling, analytical and pilot programs; technical service; central implementation of measurement and control; operating technology center; mechanical and electronic workshops

Dr.-Ing. Edda Möhle Phone: +49 2 08/85 98 -12 31 Fax: +49 2 08/85 98 -14 24 edda.moehle@umsicht.fraunhofer.de

Analysis (inorganic/organic), fuel characterization (biofuels/refuse derived fuels), biotechnology (compostability/production processes), chemical-physical measurement methods, material characterization, syntheses, environmental chemistry

IT MANAGEMENT

 Dipl.-Ing.Andreas Schröder

 Phone:
 +49 2 08/85 98 -11 31

 Fax:
 +49 2 08/85 98 -14 25

 andreas.schroeder@umsicht.fraunhofer.de

DV-auditing; planning, installation and operation of local networks; conception of central data management and security; data base development; development of web applications; client server solutions; system architecture

OCCUPATIONAL SAFETY AND ENVIRONMENTAL PROTECTION

Dr.-Ing. Ulrich Seifert Telefon: +49 2 08/85 98 -11 27 Telefax: +49 2 08/85 98 -12 90 ulrich.seifert@umsicht.fraunhofer.de

Internal coordination and advice in topics related to occupational safety and environmental protection: vocational training and on-the-job courses; registration and notification procedures; monitoring of legislative regulations

LIBRARY

BRANCH TETEROW

BRANCH WILLICH

Dipl.-Bibl. Kerstin Hölscher Phone: +49 2 08/85 98 -12 01 Fax: +49 2 08/85 98 -12 90 kerstin.hoelscher@umsicht.fraunhofer.de

The UMSICHT library provides basic literature and procures project-related literature. For this purpose it offers among others online researches in online databases (STN). The scientists of UMSICHT can use a portal, where they can research autonomously; at present SciFinder, CEABA, TEMA, INSPEC and some free (or accessible via Fraunhofer framework contracts) databases are available. In addition, the library provides support concerning publications (Fraunhofer IRB-Verlag).

Dr.-Ing. Görge Deerberg Phone: +49 2 08/85 98 -11 07 Fax: +49 2 08/85 98 -12 90 goerge.deerberg@umsicht.fraunhofer.de

At its site in Teterow, Fraunhofer UMSICHT, supported by the State of Mecklenburg-Western Pomerania and the City of Teterow, operates a rotary kiln pilot plant for the development and sample production of specific high-performance adsorbents made from renewable resources. The link between laboratory research and commercial production is supposed to stimulate agricultural businesses and companies to realize innovative projects in the fields of "utilization of renewable resources" and/or "biofuels".

TRAINING CENTER/FRAUNHOFER TECHNOLOGY ACADEMY

 Dipl.-Ing.
 Anja Gerstenmeier

 Phone:
 +49 2 08/85 98 -11 11

 Fax:
 +49 2 08/85 98 -12 90

 anja.gerstenmeier@umsicht.fraunhofer.de

We qualify specialists and business executives with the aim of strengthening Germany's innovative potential. The interdisciplinary distance learning program for environmental sciences infernum - "official project of the decade of the united nations for the education for sustainable development 2005-2014" imparts environmental know-how from more than 10 disciplines and gualifies its students who are mainly enrolled in the program parallel to their job - to think and act in interdisciplinary ways. The master degree infernum is offered in co-operation with the FernUniversität in Hagen (Open University) and is part of the Fraunhofer Technology Academy. "www.technology-academy.fraunhofer.de" or

"www.umweltwissenschaften.de"

UNIVERSITY COOPERATIONS

Ruhr-University of Bochum University of Dortmund University of Duisburg/Essen FernUniversität in Hagen Hochschule Niederrhein Fachhochschule Göttingen

The market for research and development is changing fast. As an institute operating at the interface between university research and industrial practice and offering cutting-edge and application-oriented services and products we rely on strategic partnerships with universities and universities of applied sciences in Germany and Europe. This way we can integrate basic research into our projects.

Dipl.-Ing.Carmen Michels Phone: +49 21 54/92 51 -14 Fax: +49 21 54/92 51 -61 carmen.michels@umsicht.fraunhofer.de

At its site in Willich, Fraunhofer UMSICHT offers broad customer and future-oriented services in the areas of plastics and recycling technology. Biodegradable plastics, polymers from renewable resources, materials which are gentle to resources, nanocomposites and recycling plastics are developed systematically and produced in pilot and small-scale series. Process optimization, analytics and test engineering, recycling concepts, market and feasibility studies round off the portfolio of this branch.

CIRCLE OF FRIENDS AND PATRONS

Chairman: Dr.-Ing. Thomas Mathenia (Energieversorgung Oberhausen AG)

Deputy: Dr. rer. nat. Susanne Raedeker (AGR Deponienachsorge GmbH & Co. KG)

Director: Dr.-Ing. Görge Deerberg

Research and development in the region are supported, the scientific-technical renown is sustained and the future executive staff of the economy is invested in.

Members of the Circle of Friends and Patrons are offered exclusive services such as free participation in specific events. A list of members can be found on page 115.

From the field into industry In dialogue with Dr.-Ing. Stephan Kabasci

1. You are conducting research in the area of renewable resources. What is your specialization?

We have very good expertise in biogas technology and the development of bioplastics. What is coming up new in our work is the production of chemicals which serve as intermediate products for high quality materials, such as high performance plastics.

2. Recently, your team has been complemented by a group of scientists which are the winners of a junior research program of the FNR (Agency of Renewable Resources), on behalf of the Federal Ministry of Food, Agriculture and Consumer Protection, set out to give new stimuli to the utilization of renewable resources. What is the special work for this group in your team?

With this group, we are working on the production of chemicals from renewable resources. The first step will be the biotechnological production of succinic acid, whose salt is in the body of each of us. Succinic acid is an intermediate product in our metabolism during the conversion of sugar into energy. Chemically, succinic acid is an organic dicarbon acid, a molecule made out of four carbon atoms that has an organic group of acids at each end. Succinic acid can either be produced petrochemically or biotechnologically. Some micro-organisms produce succinic acid as final product of their energy generation. And this is the biotechnological production way which we are going to improve. We are working on the entire process chain, ranging from the starch containing raw materials - be it corn, wheat

or potatoes – to the high performance material, in our case high quality plastics.

However, before yielding plastics as final products from succinic acid, the acid has to be produced fermentatively and processed. Once we are able to manufacture industrially usable chemicals, in a next step polymeric final products (technical polyamides and polyesters) may be produced. Our main target is to produce monomer buliding blocks - such as succinic acid and diaminobutane - and combine these buliding blocks to polyamids. The team which is working on this task includes one biotechnology engineer, three analytical chemists and one laboratory assistant.

3. New equipment has been bought for this work. What are you especially happy about?

Since my special field is bioengineering, I feel most happy about the new parallel fermenter systems. This system, comprising four reaction containers, permits to conduct four fermentation tests to produce succinic acid at the same time. Reaction conditions can be adapted and controlled for any container individually and the testing process can be visualized via the online measurement tools, and this helps to obtain optimized results faster than it used to be. Further advantages of the system are the significantly lower reaction volumes of 200 to 300 ml, which facilitate the scaling up of the results, that is the transfer of the results to larger plants. However, the sample volumes that we yield are still large enough, 250 ml, to permit the testing for downstream processing, for

the processing of succinic acid from aquatic solution.

For the processing of succinic acid solutions we have purchased an electronic dialysis unit. This membrane equipment is capable for instance to separate organic acids from ionic solutions via electric power – which has to be tested for our purposes. What is also new, is our infrared spectrometer coupled with a thermal gravimetric analysis unit that allows the measuring of the composition and properties of the plastics produced.

4.Partnering with the Unidad de Desarollo Technologico of the University of Concepcion in Chile, Fraunhofer UMSICHT has supported the first conference on biorefineries in Latin America. What is the outlook that you brought back from this congress?

The utilization of renewable resources – no matter if energetic or as materials offers excellent perspectives and is an international topic of policy and research. In the 7th Framework Research Programme of the European Union it is a high-ranking topic, since national networking is on its way, but only now in its initial phase. Internationally, the U.S. are a forerunner on the material recycling market. Our target is to position the institute on this market and to keep abreast with the developmentwhich is conforming to the European approach which supports international cross-Atlantic scientific cooperation. As a matter of fact, Germany has a dominating role in the field of utilization of renewable energies among Europe's industrial nations, and this became evident once more at the biorefinery congress in Chile.

Dr.-Ing. Stephan Kabasci (born 1964) studied chemical engineering at the University of Dortmund and received his degree on "Precipitation crystallization as possible production method for fine solid particles". He is also lecturer at the department of process engineering and resources management at the Ruhr University of Bochum preparing junior scientists for the future demands in bioengineering.

Dr. Kabasci is married and has two children.

5. This sounds promising, but are there any improvement potentials left?

Definitely. Germany is market leader in energetic utilization of renewables thanks to the tax relieves provided in the EEG Law on Renewable Energies. I wish the utilization of biomass for heat generation would be facilitated to the same extent. We are very eager to learn about the outcome of the present debates on this topic. What is still lacking, is the support for utilizing renewable resources as a source for material production. We are lagging behind other nations in this sector. Here, other countries are far ahead of us. In the U.S. materials made from renewable resources have to be preferred in public tenders – if technically possible. To have such general directives for public tenders would be advisable for Europe, too. Other measures that are worth thinking about could be reduced VAT rates or obligations to use renewable materials as in France. There, as of 2010 plastic bags must be biodegradable. Such measures are a

very good initial support which leads to an increase in production, a decrease in costs and helps that biobased materials can compete with their fossil-based counterparts not only with regard to quality but also where prices are concerned.

6. We have learnt a lot about your activities in research, now please let us know something on you personally. Which book would we find on your bedside table?

It is "Das oblatendünne Eis des halben Zweidrittelwissens" by Sarah Kuttner. (S. Fischer, 2006, ISBN 3-596-17108-3)

7. And which is your favourite album in your CD player currently?

The favourite CD of my family during this year's football World Cup has been "You have to win Heimspiel" released by Sportfreunde Stiller. Personally, I like to listen to the "The best of Tocotronic" and albums by the group REM.

Training Center/Fraunhofer Technology Academy

A first-class education is the mainspring for a successful workforce development– this is true today, more than ever. The education model TheoPrax[®] is a programme that has been made for students at school and university level and combines theory and real-life experience at an early stage. Fraunhofer UMSICHT acts as regional coordinator for enterprises who supply practical problems from industrial practice to schools and universities, where the projects are worked on by pupils and students.

Today, innovations emerge at a breathtaking pace, economic conditions are constantly changing and globalization leads to an increasing competitive challenge from abroad. Those who want to face these challenges successfully can no longer confine themselves to traditional studies or vocational training as it used to be. Lifelong learning is a must today. We offer career development for scientific and management staff in order to strengthen the innovation potential in Germany.

The interdisciplinary distance learning program environmental sciences infernum (www.umweltwissenschaften.de), official project of the "United Nations Decade for the education for Sustainable development 2005 to 2014", provides environmental know-how in more than ten fields and encourages interdisciplinary approaches in theory and practice. Employees in business, associations, science, administrative bodies, freelancers and qualified junior scientists get insight into cutting edge technologies and interdisciplinary knowhow in environmental technologies. The accredited master studies infernum is offered in cooperation with the FernUniversität in Hagen (Open University) and is part of the Fraunhofer Technology Academy.

The Fraunhofer Technology Academy bundles the career development offer of the Fraunhofer-Gesellschaft and offers excellent career opportunities to scientists and management staff. The latest knowledge in R&D is reflected in the content of teaching. This guarantees a unique transfer of know-how from Fraunhofer research into enterprises.

www.technology-academy.fraunhofer.de

Contact

Dipl.-Ing. Anja Gerstenmeier Phone (+49 2 08/85 98 -11 11)

Marketing, Communication, Business Development

The marketing of products and services, analyzing, and handling of business sectors, developing new market strategies, and finally representing the institute in public are the tasks of the department of "Marketing, Communication and Business Development". Being directly responsible to the directorate, we support the scientific staff in the positioning of new products and fields and in tailoring them to the customer's requirements. Market surveys and technology studies help to assess opportunities and risks of new developments at an early stage. In order to protect innovations against plagiarism, we provide support in the field of industrial property rights, we monitor and assist in patenting procedures and offer consulting in licensing contracts.

IT Management

An efficient and reliable information and communication technology service is an indispensable prerequisite for any efficient project work. The IT management provides internal and external services, focusing on the following areas of expertise:

- planning, continuous operation and support of the DP infrastructure
- provision and update of software packages
- assistance in IT-specific problems

A powerful and available network enables the effective utilization of the IT services. In addition to redundant fileservers that include capacities in the terabyte range with adequate data security, an increasingly important intranet is at our disposal.

Apart from the IT management supports apprenticeships for computer scientists with a concentration on system integration.

Library – Specialist Information Service

"Knowledge" has long since become an economic factor securing technological advantages of a location. For keeping the scientific-technical qualification of our staff always highly up to date, the scientific specialist library provides literature on the UMSICHT-specific topics environmental, energy, safety, and process and material technology as well as know-how and technology transfer.

The intranet homepage supports the staff in the retrieval of specific and technological information. Services range from literature and patent research to in-house training in end user services, from documentation of in-house publications for the Fraunhofer Publica database to documentation of conference publications, PhD theses, from author support to the delivery of the printed copy to the Technical Information Library (TIB) at Hanover.

Central Technical Services

The cycle times of technological innovations are minimizing rapidly in industrial and process engineering.

In order to secure a technological headstart and not only keep pace with others, a smooth and prompt realization must be guaranteed.

The central technical facilities realize technological know-how for internal and external costumers quickly and competently.

Specialized on the sector of test, pilot and demonstration plants our strenghts lie in:

- basic and detail engineering
- implementation of process control systems and
- measurement, control technology and control engineering.

Branch Willich – Plastics pilot plant station

At the Willich site, Fraunhofer UMSICHT offers customer and product-oriented services in the field of plastics compounding and material development. Biodegradable plastics, polymers from renewable resources, nanocomposites and recycling plastics are systematically developed and manufactured in pilot and small series. Process optimization, analytics and test engineering round off the portfolio of the Willich branch.

The target is to generate practice-oriented and economic solutions for the customers' requirements. A broad range of technical facilities from laboratory to industrial scale and our know-how of many years of research are available. Materials laboratory:

- Hot-cold mixer, Labtech LMX-10-S-VSF)
- Laboratory roll mill, Labtech-.LMR-SC-11013E
- Laboratory press, Labtech LP-S-20
- Laboratory blown film plant, Labtech LCR -300
- Twin screw extruder, TSA EMP 26-40 Extrusion lines:
- Berstorff ZE 50 Ax 47D
- Leistritz ZSE 70-36D
- Leistritz ZSE 40-36D
- APV MP 40TC-40D
- Several granulators units (water-ring, underwater and line-granulators)
- Conveyor systems and gravimetric metering systms for the processing of powder, granulate and liquid raw materials.

At Teterow, Fraunhofer UMSICHT develops products and technologies for using renewable resources as a source of energy and materials close to the agricultural sector. Together with partners from the region, at Teterow, sustainable operational concepts for bioenergy production and technologies for desulphurization of biogas are developed and tested. The objective of our work is to encourage closed production systems which are called biorefineries today.

High performance adsorbents from renewable resources are developed and produced in batch production in a rotary kiln plant. The target products are specific products on the basis of activated carbon such as specifically doped and impregnated adsorbents, which are then used for the cleaning of (bio)gas and waste gas. In the technical plants, both new formulae are developed and sample production is conducted.

The technologies available comprise mixing, homogenization, granulation, pressing, drying, pyrolysis, combustion, activating, sintering, calcination, sieving, acid washing and dip impregnation as well as the necessary testing methods. High flexibility in the production process leaves ample space for process engineering investigations so that optimum conditions for the development of custom-made products are given.

The UMSICHT laboratories

The UMSICHT laboratories stand for the solution of analytical, biotechnological and material- und particle-technological problems. A highly qualified and experienced team consisting of scientists and technical staff work closely together to handle to these future-oriented tasks. The laboratories of Fraunhofer UMSICHT comprise the analytics laboratory, the biotechnological lab, the physical and the chemical lab.

Analytics Laboratory

Precise and reliable analytics is a prerequisite for the solution of environmental problems. The institute is equipped with comprehensive facilities including most modern analytical system combinations.

The wide range of services offered includes normative procedures and in particular the development of innovative, customized methods.

Examples from the analytics portfolio:

- Characterization of biofuels
- Analytics of fats, oils, organic acids and alcohols

- Hormone analyses
- Tar analyses
- Fuel characterization

The validation of the measuring results is conducted via comparison with external laboratories (ring testing). Another focus is on the optimization of technical processes for quality improvement and analyses of refuse derived fuels.

Our team offers analytical solutions, consulting services in the planning of examinations and helps evaluating your analytical results.

Biotechnological Laboratory

The biotechnological laboratory handles tasks on the cleaning of polluted media (water, soil, air), examines biological decomposition and production potentials, and develops novel microbiological processes from laboratory to pilot plant scale.

New biotechnological processes and plants are planned step by step, designed and examined to ensure technological feasibility at a high level of efficiency and operational safety. The biotechnological laboratory can realize creative and efficient solutions by co-operating with engineers and natural scientists of the analytics and the engineering departments.

As an approved testing laboratory of "Bundesgütegemeinschaft Kompost e.V." (Federal association of compost quality standards), and approved testing laboratory of DIN CERTCO for testing of composting capability of materials according to DIN V 54900-1 to -3, ISO 13432, ASTM 6400 we offer:

- microbiological analyses according to DIN, ISO, OECD-processes
- testing of biodegradability under aerobic and anaerobic conditions
 (e. g. AT₄ and GB₂₁ according to "Abfallablagerungsverordnung"
 [Regulations concerning waste disposal])
- Development of biotechnological production processes

Physical Laboratory

For years Fraunhofer UMSICHT has intensively done research and development in the fields of material sciences and particle technology. As a result we can readily offer you a broadranged portfolio for the characterization of dispersions, powders, polymeric compounds, hydrogels and specific nano and microparticles.

Our service range comprises in particular the following investigations:

- Particle size and shape (static and dynamic light scattering, sieving, microscopy)
- Interfacial properties and porous structures (e.g. tensiometry, electrophoresis, mercury porosimetry, gas sorption)
- Composition, structure and phase conver-

sions (e.g. thermal analysis, rotation rheometry, IR-spectroscopy)

• Determination of mechanic parameters (e.g. tensile tests, notched-impact strength test, tribological measurements)

Besides providing reliable measurement results – particulary when no standardized methods are available – our team excels in the interpretation of data related to process engineering and to latest trends in materials technology.

Chemical Laboratory

The recently set-up chemical laboratory focuses on four areas of preparative and synthesis chemistry.

- ParMa: A parallel reactor system including fume hood-equipped working places for preparation and follow-up work.
- Biofuels: Besides fume hood-equipped places for the treatment of biodiesel products, two small-scale systems for the cleaning of biodiesel products are available.
- DSP: the downstream processing sector comprises several small-scale systems for the cleaning and concentration of intermediate product flows.
- SynLab: This area also offers fume hoodequipped working places for general chemical syntheses. In addition to the comprehensive lab scale equipment, inert gas and vacuum lines, compression reactors and special gases are available.

Analytical problems are solved in co-operation with the analytics and physical laboratories. One focal point is the analysis of plastic materials using the following methods:

- Chromatographic methods: HPLC-MS, GC-MS, GPC, IC
- Thermo-analytical methods: DSC, TG (range to 1 000 °C and to 1 600 °C)
- Spectroscopic methods; IR (reflexion and transmission, film press, TG-IR-coupling, IR-databases, ICP-AOS)
- Elementary analysis

The chemical laboratory synthesis offers outstanding services through the co-operation in a team of chemical experts and chemical engineers of different scientific areas, who offer their competencies for the solution of your technological problem.

We develop and optimize technical processes for the production of materials and for the generation of energy from renewable resources and biogenous residues. Our strengths lie in the application of biotechnological processes and chemical conversion steps as well as in plastics technology.

We focus on environmentally compatible generation of power, heat and cold, on sustainable production of platform chemicals and on the development of novel materials and products. Our laboratories and pilot plants allow us to scale-up from first samples of new materials to small scale production.

Renewable Resources

Development of a microbial quick-test for the identification of inhibitors in anaerobic digestion processes

New laboratory capacities for research – FNR Junior Scientists Group takes on work

Efficieny improvement of biogas plants through continuous biogas analysis

From the field to a successful product: Corn starch foam

RENEWABLE RESOURCES

Development of a microbial quick-test for the identification of inhibitors in anaerobic digestion processes

Inhibiting areola test with Clostridium thermobutyricum

Manure and organic wastes can be utilized in an environmentally friendly and economically viable manner through anaerobic digestion in biogas plants. However, operational disturbances during operation of digesters and biogas plants after the use of potentially inhibiting feed materials have been reported. This is of particular significance with regard to the disturbing effects of manures containing antibiotics. Fraunhofer UMSICHT is investigating the influence of various digestion inhibitors and is developing a microbial guick-test for a simple, on-site determination of the inhibition potential of fermentation substrates. Comparable quick-tests are already commercially available for the evaluation of milk.

The development and validation of the test is accomplished by using several antibiotics that are used as veterinary pharmaceuticals. In order to determine

On this workbench, we work with anaerobic bacteria

the degree of inhibition of various substances in the presence of manure, so-called inhibiting areola tests are performed. In the development phase, Bacillus subtilis are investigated as test germs and Clostridium thermobutyricum as a potential anaerobic strain for the quick-test. The substance to be tested is applied to a culture medium containing the appropriate bacteria. If the substance is inhibiting, an inhibiting areola (zone of inhibition) forms in which no growth takes place. Depending on the size of the inhibiting areola, the strength of the inhibition can be classified. In parallel, the inhibition of antibiotics on the biogas process is assessed with the help of fermentation tests.

This project (AiF-Vorhaben Nr. 185 ZN/2), funded by the BMWI (Federal Ministry of Economics and Technology), is being completed in cooperation with partnering institutes. The Institute for Energy and Environmental Technology IUTA performs the instrumental analytics of the pharmaceuticals and other inhibitors as well as their influence on the continuous anaerobic degestion process. The Food Toxicology Department of the University of Veterinary Medicine Hannover (TIHO) is also performing work on the analytics and toxicology of inhibitors.

Contact

Dr. rer. nat. Ute Merrettig-Bruns Phone (+49 2 08/85 98-12 29) Dipl.-Ing. Bettina Becker Phone (+49 2 08/85 98-14 03)

RENEWABLE RESOURCES

New laboratory capacities for research – FNR Junior Scientists Group takes on work

Parallel fermenters

The production of new polymeric materials on the basis of renewable resources requires precise analytical monitoring and, thus, comprehensive laboratory equipment. By investing in additional laboratory work space and the appropriate preparative laboratory equipment, Fraunhofer UMSICHT has created the best prerequisites to meet those needs. New, non-fossil based alternatives for the production of monomeric raw materials and their conversion into polymeric materials are being researched and developed. From gel-permeation chromatography (GPC) to the coupling of thermogravimetry with infrared spectroscopy (TG-IR), modern analytical equipment is available to support the research efforts. The existing equipment is complemented by investments into high pressure reactors, capillary viscosimetry, and inline/online spectroscopy for reaction monitoring.

Coupled thermogravimetry/infrared spectroscopy (TG-IR)

Electrodialysis

An additional research area in the process chain is the extraction of bio-based raw materials (e.g. organic dicarbonic acids) that can serve as the basis for the manufacture of monomers. With the help of a parallel fermentation system, a series of tests with different, defined parameters for the screening of suitable product strains and for the optimization of the reaction conditions for the biotechnological manufacturing of the raw materials is possible. The utilization of processes for product extraction plays an important role in the development of bio-processes. For this purpose, various unit operations of mechanical and thermal process technology are available. Fraunhofer UMSICHT also has a new electrodialysis unit at its disposal with which organic acids such as succinic acid can be separated and purified.

The equipment investments are put to work by junior scientists for basic research and application development concerning high performance polymers based on C4-stemming chemical raw materials from industrially available renewable resources. The group is funded by the BMELV/FNR. (Federal Ministry of Food, Agriculture and Consumer Protection/Agency of Renewable Resources; FKZ 220-249-05)

Contact

Dr. rer. nat. Rodion Kopitzky Phone (+49 2 08/85 98-12 67) Dr.-Ing. Stephan Kabasci Phone (+49 2 08/85 98-11 64)

RENEWABLE RESOURCES

Efficieny improvement of biogas plants through continuous biogas analysis

Pilot plant for the treatment of brewery wastewaters

Anaerobic processes for the generation of biogas from renewable resources, biowaste, or industrial wastewaters have long been established and applied globally.

Independent of the widely varying feed materials, the same multi-stage biological process chain is the basis for all of these processes. While evolution has brought up natural processes over two billion years which function optimally in the most diverse environments, the utilization of this process in technical systems is only at the beginning of its optimization: High conversion rates with a stable, problem-free operation are the goal.

In a project funded by the Zukunfts-Wettbewerb Ruhrgebiet (Future Competition Ruhr Area), Fraunhofer UMSICHT has developed a model for the evaluation of the process conditions of biogas plants on the basis of easily

 $[\]rm CH_4$ and $\rm CO_2$ concentrations of a pilot plant under various loads

measurable parameters (COH₄ and CO₂ concentrations) in the biogas. This model can be used to develop predictions for the continued operation of the plant.

The determination of operating data and system conditions was performed on two demonstration plants of a semitechnical scale. The units used were a modified UASB reactor (Upflow Anaerobic Sludge Blanket, Patent-No. DE 10 2004 021 022 B3) for the treatment of brewery wastewater and a fully mixed reactor system for the digestion of renewable resources. The research focused on the influences of various plant disturbances on the gas concentrations starting with very low stresses up to deliberate overloading.

The graphs of the CH_4 and CO_2 concentrations showed a significant relation to the specific operational condition of the plant. Due to its strong dependence

to the specific reactor system and the utilized feed materials, the results could not be directly interpreted. In combination with an appropriate expert system which takes the specific characteristics into consideration, the continuous CH_4 and CO_2 measurement becomes a valuable tool for the optimization of the operational safety and the performance of biogas plants.

Contact

Dipl.-Ing. Joachim Krassowski Phone (+49 2 08/85 98-11 62) Dr.-Ing. Stephan Kabasci Phone (+49 2 08/85 98-11 64)

Project Partners

- Loick AG
- CHEMEC Ingenieurbüro für Chemo-Messtechnik GmbH
- Private brewery Moritz Fiege GmbH & Co KG

RENEWABLE RESOURCES

From the field to a successful product: Corn starch foam

Extruded sheets made from corn starch (Playmais, courtesy of Cornpack GmbH & Co. KG)

Products with short life cycles, when made from renewable resources, can make significant contributions to the reduction of CO₂-emissions, to the independence from fossil raw materials, and to the alternative utilization of agricultural areas. Material recipes from corn starch and corn grit are especially beneficial because the raw materials can be made without technically or chemically extensive process steps. Particularly, loose-fill-chips were able to win a significant market share from oil-based packaging chips made of foamed polystyrene due to their excellent characteristics and competitive price.

Fraunhofer UMSICHT is currently working on various projects on the processing of corn starch and corn grit. In a basicresearch oriented project, the rheology and the foam creation of corn starch

Extrusion plant for corn starch

Research tool for corn starch foam processing

in dependence on the recipe, temperature, pressure, and water content is being investigated. The goals of cooperative projects with industrial partners are product developments for the utilization of corn starch and corn grit for molded packaging foam parts and as porosity adder in the brick industry.

The development work has a material and a process focus. On the material side, recipes based on the utilization of raw materials and additives are to be developed to meet the requirements of the end product such as water resistance, abrasion resistance, and price. Regarding the process technology, an economic and reliable process has to be developed. In addition, the requirements to the foam structure, the density, or the surface quality have to be fulfilled. Fraunhofer UMSICHT is making an important contribution to the transformation of product ideas into successful products from corn starch foam with its basic research and product specific cooperation project with industrial partners.

Contact

Dipl.-Ing. Thomas Wodke Phone (+49 2 08/85 98-12 63) Dipl.-Ing. Carmen Michels Phone (+49 21 54/92 51-14)

We develop and realize system solutions for process technology using pilot plants in the laboratory and the technical shops as well as model-based simulation software. In doing so we look at the process chain as a whole: from the idea to the commercial process and from the raw material to the utilization of residues at the end of the product life cycle.

Our strengths lie in membrane, separation and reaction technology as well as in pipeline technology. Our technical services range from closing of water cycles, wastewater treatment, resource recovery from process flows and thermal process engineering up to an extensive know-how in the areas of multiphase systems and downstream processing for white biotechnology and biorefineries.

Process Technology

Technology platform for integrated manufacturing of bio-based chemical products

Integrated water resources management in the province Nam Dinh/Vietnam

Fluidic evaluation of the mixing technology in biogas plants

Technology with holes: Microsieves of particulate matter removal

PROCESS TECHNOLOGY

MAVO¹: BioProChem — Technology platform for integrated manufacturing of bio-based chemical products

40

Research areas of the research alliance

In mid 2005, eight Fraunhofer Institutes joined to form a research alliance. This alliance collaborates on the development of a technology platform for the integrated manufacturing of bio-based products through bio-technological processes. Our approach is integrated and encompasses all process steps from bio-catalytic screening over bioprocesses all the way to bioproduct development and utilization. In addition, the technological development is assessed with regards to its economics and sustainability. As an example, the process chains "1,3-propanediol from glycerol" and " α ,w-dicarbonic acids from oils" are being investigated.

Fraunhofer UMSICHT has taken the lead role in evaluating the questions of raw material processing (upstream processing, USP), product processing (downstream processing, DSP), process design, and process integration.

From raw material to product

The success of biotechnological processes is determined by the chosen processing steps (USP) as well as by the processes for product isolation and treatment (DSP). In order to make the raw material fractions more accessible to the microorganisms or enzymes of the bioconversion step, various processing steps are required depending on the source material. Following the bioconversion, the raw product mixtures typically only contain low concentrations of the desired constituents. At the same time, there are great requirements on the purity of the final product. These conditions place high demands on the selection and optimal setup of the necessary separation technology. In addition, the process integration of downstream and upstream processes is gaining ever greater importance. It offers an interesting approach for an increase of throughput and an improvement of economic viability. In order to

examine all possibilities for process integration for biotechnological processes, mathematical models are indispensable.

Contact

Dipl.-Ing. Hans-Jürgen Körner Phone (+49 2 08/85 98-12 72) Dr.-Ing. Görge Deerberg Phone (+49 2 08/85 98-11 07)

¹MAVO = Fraunhofer-internal program for

"Market oriented strategic preliminary research" ²participating institutes = IAP, ICT, IGB, IME, IPA, UMSICHT, IVV and WKI

PROCESS TECHNOLOGY

Integrated water resources management in the province Nam Dinh/Vietnam

Casting process with extremely high dust pollution

As a result of war and rapid population growth, the water supply in Vietnam is in a deficient state. Ground and surface waters are extremely polluted due to lacking water treatment systems, causing significant health problems for the population in the water cycle. Therefore, the Vietnamese government has given the construction of water treatment systems a high priority. On this basis, projects between Vietnam and Germany have been initiated to solve the problem via know-how and technology transfer.

Fraunhofer UMSICHT is partner of an IWRM-project network¹ with more than 15 partners. Prognoses and action suggestions in three example areas in Vietnam are being developed for an integrated evaluation for river areas. funded by the BMBF (Federal Ministry of Education and Research. Under the leadership of the University of Greifswald and the participation of two me-

Highly polluted wastewater discharge into a rice field

Uncontrolled wastewater discharge from casting factory

dium-sized companies, the aim of the research project in the province Nam Dinh is the development and modelbased set-up of wastewater treatment systems. The concepts to be developed pertain to industrial and municipal wastewaters, each for rural and urban areas. The efforts are being supplemented by instructional programs and workshops for Vietnamese decision makers. Fraunhofer UMSICHT will evaluate the possibilities of cleaner production technologies and develop concepts for a sustainable and efficient utilization of the resource water.

In November 2006, the first visit of the project network to Vietnam took place. In greater Nam Dinh City and surrounding ports industrial processes in rural areas and existing as well as planned industrial areas were inspected. Technological standards are lacking in rural areas especially, which leads to significant air and water pollution. Subsequently, Cleaner Production (CP) measures are developed for specific small enterprises which then have to be discussed with Vietnamese partners regarding effectiveness and implementability. In addition, aerobic and anaerobic treatment processes for industrial and municipal wastewater will be planned and first steps for the installation of a pilot plant will be completed.

Contact

Dr.-Ing. Stefan Schlüter Phone (+49 2 08/85 98-11 26) Dipl.-Ing. Volkmar Keuter Phone (+49 2 08/85 98-11 13)

¹IWRM = Integrated Water Resources Management

PROCESS TECHNOLOGY

Evaluation of the mixing technology in biogas plants

Feedstock mixing bin, buffer tank and fermenter

The amendment of the Renewable Energy Sources Act (EEG) and the increase of payment for electricity fed into the grid due to various bonuses have created a previously unknown boom in the construction of biogas plants in Germany. Thus, it is expected that by 2010 the number will increase to approximately 10 000 from the roughly 4 000 currently existing. Simultaneously, a trend to ever increasing plant sizes can be observed. This is where process engineering is especially needed: Currently utilized technology for biogas production has to become much more efficient

In cooperation with the operator of a biogas plant, Fraunhofer UMSICHT is investigating the mixing technology in biogas fermenters. The purpose of the mixers is to assure the homogeneity of the fermenter contents with regard to material and temperature. The biogas yield is very dependent on the mixing

Axial speed $[m \ s^{\ 1}]$ in the midplane of the fermenter with associated flow rate of substrate $[m^3 \ s^{\ 1}]$

quality of the fermenting substance. In addition, the unwanted formation of floating or sinking layers at the surface and bottom of the fermenter should be prevented.

Currently, the selection of appropriate mixers is currently largely based on data of the diameter-height ratio of the fermenter and the dry solid portion of the substrate. Since these numbers only offer a rough guideline, Fraunhofer UMSICHT uses CFD (Computational Fluid Dynamics) in order to put the design and operation of mixers on a theoretical basis. Important global reference data such as power requirements, flow rate, and mixing time can be derived from the calculated three dimensional flow field. In addition, local phenomena such as zones of bad mixing can be made visible. Subsequently, alternative mixer designs can be tested on the computer regarding their effectiveness.

Such information represents a valuable support in the planning process for manufacturers of mixers. Operators of biogas plants benefit from the implementation of optimized technology.

Contact

Dipl.-Math. Torsten Hennig Phone (+49 2 08/85 98-11 51) Dr.-Ing. Görge Deerberg Phone (+49 2 08/85 98-11 07)

PROCESS TECHNOLOGY

Technology with holes: Microsieves of particulate matter removal

Main source of the man-made share of particulate matter is industry

The advantages of innovative microsieve filtration for the treatment of food and water were explained in the 2005 annual report. However, microsieves can do more: They have the potential to make a positive contribution to the current particulate matter problem.

What is particulate matter? Is defined as the particles that pass a size selective air inlet that has an aerodynamic diameter of 10 µm and a removal efficiency of 50%. It can cause serious health issues such as (cough, cardiovascular diseases). Based on its lung mobility, it can even be a carcinogenic. The renewal of the 1. BImSchV¹ will soon require the use of technical systems for particulate matter removal even for small combustion ovens (fireplaces included!). Microsieves made from metal can form the basis for an efficient filtration process for the removal of particulate matter due to their material characteristics (heat and corrosion resistance,

Private households also emit particulate matter via wood pellet heating for example

Removal of particulate matter will also be required for small combustion ovens

smooth surface) and very high filtration capacity.

A white light confocal microscope², which has been adapted to perform automatic quality control, was used for the systematic characterization of the microsieve removal. Using the microscope, it could already be proven that ash residues on such a microsieve can be removed from the surface without any residue remaining. In order to measure the pressure drop, a microsieve test station was set-up in the workshop. Previous tensile tests have revealed that the strength of the microsieve films is still seen as too low for long-term use in gas filtration when exposed to stresses from periodic backflushing. Therefore, research activities are focused on the stabilization of the microsieves with different variants of metal support structures.

Subsequently, it is planned to test the first prototypes of the modified microsieves in combustion plants and to develop a reliable cleaning process.

Contact

Dipl.-Ing. Josef Robert Phone (+49 2 08/85 98-11 50) Dipl.-Ing. Esther Stahl Phone (+49 2 08/85 98-11 58)

¹ BImSchV = Bundes-Immissionsschutzverordnung – Ordinance for the Implementation of the Federal Immission Control Act (Ordinance for small and medium combustion plants) ² Confocal microscope = Variant of the light microscope with which virtual optical cuts through an object can be generated. These cut representation can be combined into a spatial illustrati on using appropriate software. (Source: www.wikipedia.de)

"Mobility is seen as the epitome of personal freedom. We conduct research today so that biofuels become important factors in paving the way for sustainable transportation and environmentally friendly mobility with the highest supply security."

[Dr.-Ing. Axel Kraft, Business Unit Manager Biofuels] We develop and optimize biofuel production processes. Specializing in biodiesel synthesis we combine experience in the analysis of the reaction process of catalytic conversion using alkaline and in particular nitrogenous catalysts with our know-how in chemical and process engineering and detailed modelling of biological and physiochemical processes.

Our services cover the entire range from basic research to the processtechnological concept of plants. Our contribution to sustainable mobility is completed by extensive know-how in the field of pyro-catalytic hydrocarbon synthesis from biogenous waste fats.

Biofuels

Innovative biodiesel production

OILPRODIESEL: Production and utilization of biodiesel from used frying oils in Oeiras (Portugal)

BIOFUELS

Innovative biodiesel production

Rising CO₂ emissions, largely generated from the combustion of fossil energy carriers, and growing fuel demand have increased interest in the development of fuels from renewable resources. Since over 30% of the energy consumed in the European Union is attributed to the transportation sector, the goal of the EU is to replace one quarter of fossil fuels with biofuels by 2030. Fraunhofer UMSICHT wants to contribute to the attainment of this goal and is working on the optimization of biodiesel production.

Biodiesel is produced by transesterification of plant and animal oils with methanol to methyl ester and glycerin. Typically a base such as sodium hydroxide (NAOH) catalyzes the reaction. A partial conversion to methyl ester and glycerin can usually be achieved in a first reaction step. Subsequent to the separation of the glycerin phase, a virtually complete transesterification of the oils occurs in a second reaction step. As an unwanted side reaction,

Nitrogen-containing catalysts accelerate the phase separation and product processing for biodiesel synthesis

soaps are generated which use up the catalyst, reducing the biodiesel yield and complicating the product separation. The process therefore requires extensive processing steps such as the washing of the methyl ester phase or the removal of the catalyst.

In Germany, the production of biodiesel currently costs 1.4 billion Euro with a

is currently testing different nitrogencontaining catalysts (amines, guanidines) for their applicability in the production of biodiesel. Accordingly, the influences of various parameters on the methyl ester yield are being investigated. The transesterification occurs in a single stage, much more quickly, and without soap generation.

Transesterification reaction of oils

production volume of approximately 2 million tons. In order to improve the competitiveness of biodiesel, the requirements for product processing have to be reduced, the reaction has to be sped up, and the yield has to be increased. One solution is the substitution of the catalyst. Fraunhofer UMSICHT The product processing is significantly simplified through the accelerated phase separation, which brings a reduction of production costs within reach.

Contact

Dipl.-Ing. Anna Grevé Phone (+49 2 08/85 98-12 71)

BIOFUELS

OILPRODIESEL: Production and utilization of biodiesel from used frying oils in Oeiras (Portugal)

The prevalence of biodiesel utilization as fuel varies throughout Europe. For example, Portugal produced 1 000 tons in 2005 which represents only 0.2% and 0.6% of the biodiesel amounts produced in France and Germany, respectively. Overall, biofuels constitute 1.2% of the total fuel consumption. An increased biodiesel supply could make an important contribution to reaching the European goal of consuming 5.75% biofuels out of the total fuel consumption in Portugal as set forth in the EU-Directive on the promotion of the use of biofuels (2003/30/EG). Biogeneous waste fats and used frying oils can complement oil seeds.

This is where the international demonstration project OILPRODIESEL, funded

by the European Union under the "LIFE-Environment"-Program, comes in. In the town of Oeiras near Lisbon with a population of 35 000, used frying oils are collected from households, schools, gastronomy in an integrated collection system and converted into biodiesel on site. The generated fatty acid methyl esters are used as fuels in the municipality's vehicle fleet.

Aside from the provision of the biogenous fuels, the project solves an acute ecological problem by eliminating the disposal of used frying oils in the wastewater system.

Fraunhofer UMSICHT is contributing to this project by developing the technical and legal boundary conditions, performing safety assessments for the implementation of the required process equipment, experimentally evaluating possible ways for the chemical upgrading of the produced fuel, and providing an ecological and socio-economic technology assessment.

Contact

Dr.-Ing. Volker Heil Phone (+49 2 08/85 98-11 63)

"There are 20 million known chemicals. Thus, material innovations do not emerge from new materials but by the smart combination and structuring of available materials. Our approach: We develop functional micro and nano particles in order to functionalize polymers!"

[Dipl.-Ing. Jürgen Bertling, Business Unit Manager Advanced Materials] On the basis of your requirements, latest findings in material research or inspirations from nature we develop strategies for new materials and test their industrial practicability under ecological and economical aspects.

One major focus is the equipping and fuctionalization of thermoplastics, wood and leather with functional additives, nano or microscale particle systems or hydrogels. Matrix materials are modified and processed in laboratory and industrial scale with the help of innovative technologies and industrially established processes. On the basis of virtual and real specimen or prototypes we use intelligent simulation and testing procedures to examine the appropriateness of the respective materials for their special applications.

Advanced Materials

Swellable thermoplastic elastomer composites: New material basis excels in tests

Evaluation of cutting, breaking, and wear processes via DEM and FEM

 $\mathsf{scCO}_{\mathsf{2}}$ (supercritical carbon dioxide) – Material research under pressure

Production of thermoplastic nano-composite materials and characterization of their surfaces

ADVANCED MATERIALS

Swellable thermoplastic elastomer composites: New material basis excels in tests

Assessment of Q-TE-C[®] samples under dry and swollen conditions

Cracks and holes by definition are some of the main problems in the field of sealing technology. "Swellable rubber" products currently used for sealing in the area of engineering and piping construction are cost intensive due to their natural rubber content and extensive production process requirements. Additionally, they can usually only be produced in the form of simple geometric profiles.

Swellable thermoplastic elastomer composites Q-TE-C[®], developed by Fraunhofer UMSICHT, offer price effective material alternatives that exhibit excellent shape forming characteristics even for complex profile geometries and are well suited in the field of concrete construction for the sealing of joints or wall/floor connections, for example. The shape forming of the new material class, a combination of thermopla-

Calculation of the dimensional changes of a rectangular seal profile (L x W x H = $300 \times 25 \times 20$ mm), which is typically used for the sealing of wall/floor joints in the construction industry (concrete construction), after 17 days of swelling.

Results of the calculation of a sealing scenario in 2D sections of the profile shown in picture 2

stic matrix with rubber powders and swellable polyacrylates, is achieved with methods from thermoplastic processing. Manufacturers of sealing profiles can melt the rubber-containing plastics and process them like thermoplastic polyethylene, polyproylene, or polyamide. Correspondingly, the Q-TE-C[®] material is inexpensive for injection molding, extruding (extrusion molding), or calendering (pressing into plates or films). Additionally, it is weldable which is especially beneficial for use in the construction industry for example.

As shown by the theoretical evaluation of the swelling process on the basis of the finite element method (FEM), the calculated profile geometries coincide with the experimental ones. Therefore, a goal oriented design of swellable seal geometries is possible on the basis of simulated sealing scenarios. In ongoing efforts, the material development is performed utilizing continuously processing pilot plants, while the material basis and swellability are analyzed mechanically. The construction supervision permit for the use as a swellable joint seal has been applied for.

Contact

Dr. rer. nat. Holger Wack Phone (+49 2 08/85 98-11 21)

ADVANCED MATERIALS

Evaluation of cutting, breaking, and wear processes via DEM and FEM

Experimental cutting tests

On the basis of the biological example of rodents, who posses self-sharpening teeth, Fraunhofer UMSICHT is researching cutting tools. In order to better understand the different mechanisms that are advantageous for the severance of materials, simulation models of cutting, breaking, and abrasion processes are generated using DEM (Discrete Element Method) and FEM (Finite Element Method). These are calibrated on the basis of simultaneous cutting trials. The main challenge of this adaptation is the path and time scale order since the wear on cutting tools occurs on different scales:

- Molecular scale (adhesion, corrosion)
- Nanometer scale (abrasion)
- Micro/Millimeter scale (nicking)
- Kilometer scale (total cut length)
- Milliseconds (contact knife/tool)
- Hours/days (downtime of the tool)

FEM calculation of cutting to length

Model of a rotor mill with the cuts made up of discrete elements

In order to deal with this scale problem, the following steps are completed:

- Scale equalization through analogous models for the molecular and nanometer range
- Time lapse (one cut represents many cuts)
- Development of a method for the conversion of the simulation results to any cut geometry and material

Time lapse is especially important for performing simulations in reasonable time frames since DEM and FEM analyses require large computation capacities. The utilization of simulation software creates a time and cost saving opportunity to test and optimize cutting tools early in their development. As a result, the life of knives can be extended significantly which is also accomplished with the help of the self-sharpening effect. For industrial applications, this leads to a reduction in maintenance and reworking costs as well as an increase in production reliability.

Contact

Dr.-Ing. Jan Blömer Phone (+49 2 08/85 98-14 06) Dipl.-Ing. Uwe Großmann Phone (+49 2 08/85 98-11 75)

ADVANCED MATERIALS

scCO₂ (supercritical carbon dioxide) – Material research under pressure

Solid and liquid active ingredients are prepared in an easily dosable, mixable, and stable form as a powder. In addition, the control of morphology can help influence the release characteristics and reactivities.

Carbon dioxide can reduce the viscosity, surface tension, and melting point of polymers depending on its pressure and temperature. It exhibits beneficial coverage and material transport characteristics and is an advantageous propellant medium for spraying and foaming. In addition, it is inexpensive, readily available, physiologically harmless, inflammable, and is mostly inert towards other materials. In terms of process technology, carbon dioxide is characterized by the fact that it can be readily removed without leaving residues. This eliminates the cost intensive process steps of solvent removal and treatment as well as drying. This makes supercritical carbon dioxide a "green solvent".

In this context, Fraunhofer UMSICHT has set up an extensive high pressure

Pressures of up to 500 bar are utilized in the high pressure workshop for material processing

technical workshop for the processing and modification of plastics, wood, insulation materials, and leather. The use of supercritical carbon dioxide as a process additive for improved distributive and dispersive mixing of nano and micro filler materials is being investigated in a double screw extruder. Rotary mixers are available for the impregnation and surface modification of porous and homogeneous materials and parts, for example hydrophobizing, silicification, and antistatic finishing. An integrated compounding and spraying plant (PGSS-1 and CPF-process2) is utilized for the micronization of low to medium viscosity polymers. It allows the production of plastic powders such as glues, coating materials, and sinter powders as well as the production of additive and active ingredient carrier systems.

Contact

Dipl.-Ing. Jürgen Bertling Phone (+49 2 08/85 98-11 68) Dr.-Ing. Gunnar Brandin Phone (+49 2 08/85 98-12 83)

¹ PGSS = Particles from Gas Saturated Solutions ² CPF = Concentrated Powder Form

ADVANCED MATERIALS

Production of thermoplastic nano-composite materials and characterization of their surfaces

Stick-slip test bench

Nano composites currently represent one of the most exciting and promising research topics in the plastics industry! Polymer nano composites, according to their definition, are combinations of a polymer matrix and nano-scaled fillers, either organic or inorganic particles, which contain at least one dimension in the nanometer range. Using very low filling degrees (far less than 10%), highly efficient strengthening, increased dimensional stability, and improvements in fire protection, barrier, tribologic, and electrostatic characteristics can be achieved

Nano particles represent a new class of additives on the market that hold large potential to utilize previously non-feasible performance reserves of plastics and thus drive the trend in the polymer material development forward: to design polymer materials as highly functional and intelligent materials.

SEM picture of a PBT-zinc oxide nano composite with optimum dispersion of the nano particles

Against this background, the business unit Advanced Materials has developed processes for the production of tribologically optimized nano-composites especially for powder applications such as electrostatic coating and laser sintering. Fraunhofer UMSICHT has increased its competence in the manufacturing of nano-composites with kneaders and extruders. As a result, nano particle systems were identified that improve the abrasion characteristics of technical polymers while at the same time positively influencing the processability of the materials by improving their flowability and melt viscosity.

Newly installed measurement techniques can be used in the future to comprehensively characterize material surfaces. This includes equipment for the measurement of dynamic and static fraction coefficients, the determination

of the stick-slip risk, for the characterization of the abrasion behavior, and for the determination of the surface tension via a tensiometer. Additionally, we work with energy dispersive x-ray fluorescence analysis (ED-RFA) and digital microscopy.

Contact

Dipl.-Ing. Marcus Rechberger Phone (+49 2 08/85 98-14 05)

¹ Stick-Slip = describes the jerky motion of two solid objects moving against each other. Noises such as the screaching of iron of trains and trolleys during turns or the creaking of leather shoes are commonly known results of this effect. (Source: www.wikipedia.de)

"Every five years the worldwide accessible knowledge doubles.

Intelligent target group-oriented information management can help to quickly separate relevant from non-relevant information and thus plays a central role in today's production value added chains."

[Dipl.-Phys. Thorsten Wack, Business Unit Manager Information Technology in Process Engineering] According to forecasts of the EU Commission 80 % of technologies applied today will be substituted by new technologies within the next 10 years.

Value added chains in companies are closely connected to the supply of information. Often, optimizations cannot be realized without a sufficient data pool.

The close linking of operational processes to specific organizational and technical information in connection with ergonomic user interfaces bridges existing information gaps. For this purpose service-oriented architectures (SOA) are created and provided in form of application service providing (ASP) which enables the access from any location and from any client.

Information Technology in Process Engineering

Systematic network analysis using LANrunner®

Hazardous material management and information system GEVIS II

Keeping an eye on all data with DAVID (Data Acquisition and Visualization Device)

Hazardous material storage - Optimization of logistics and security

INFORMATION TECHNOLOGY IN PROCESS ENGINEERING

Systematic network analysis using LANrunner®

Keeping an eye on your network

The bigger the size of an IT network, the more difficult it is to keep an overview of it. The LANrunner[®] (http:// www.lanrunner.de) system developed by Fraunhofer UMSICHT represents a solution for an effective network analysis which enables the optimization of a network or even an entire IT infrastructure.

Using the LANrunner[®]-System application, network statistics can be generated and visualized so that the parties responsible for IT can always keep a clear overview and gain important insights for planning. Aside from network traffic, the measurement data collection via SNMP¹ allows the compilation of all SNMP available numerical data such as RAM or hard drive capacity utilization or even the processor temperature of the processor. An intuitively operated web interface encompassing an open link to the GUI² and database – in the future also accessible via SOAP³ – en-

LANrunner®-Server

able a flexible utilization and visualization of the data. The data is saved in a consolidated database so that values are available for evaluation over time periods of months or even years.

Aside from the identification of abnormal conditions, long-term statistics represent a valuable planning tool so that resources can be increased before the hotline rings. What is the source of a problem? When does the bandwidth of an internet connection of a business have to be increased? How long will the capacity of a file server last? In this sense, LANrunner[®] complements the well known saying: "Never change a running system but always know what it is doing."

Contact

Dipl.-Ing. Andreas Schröder Phone (+49 2 08/85 98-11 31) Daniela Giesen Phone (+49 2 08/85 98-11 32) ¹SNMP = Simple Network Management Protocol is a network protocol that helps supervise and control network elements (e.g. router, server, switches, printer, computer, etc.) from a central station. (Source: www.wikipedia.de)

² GUI = Graphical User Interface

³ SOAP = Simple Object Access Protocol is a protocol with which data can be transferred between systems and remote procedure calls (tasks via a network to distant computers) can be performed

Reference system at Fraunhofer UMSICHT: Locations of the Fraunhofer Gesellschaft

INFORMATION TECHNOLOGY IN PROCESS ENGINEERING

Hazardous material management and information system GEVIS II

When working in the laboratory, it is important to know which working material is considered hazardous and how to avoid dangers.

When dealing with hazardous materials, many things have to be paid attention to. For example, it is important to know which material is classified as hazardous, how appropriate measures reduce risks during storage, transport, and handling of hazardous materials, etc. The software system GEVIS II developed by Fraunhofer UMSICHT can help with these and other issues.

Approximately 42 institutes of the Fraunhofer-Gesellschaft work with hazardous materials. So far, about 19 500 materials and 15 000 directives have been administered by the software system GEVIS. The new software edition, GEVIS II, is characterized by a centralized, failsafe ASP¹ architecture which provides a client side (institute or location related) presentation level. The utilized holon-architecture (software cells) makes it possible to be flexible with regard to reacting to changes in the GefStoffVO² as well as the work-

Much has to be considered when dealing with hazardous materials: The GEVIS II software helps accomplish that.

flow. An ergonomic and intuitive user guidance via a web front-end makes access to the relevant information for specific jobs and the associated hazardous materials much easier for the employees of the individual institutes.

A particular challenge was the complete data transfer from the previously used systems during the introduction of GEVIS II, which now administers all hazardous materials used by the Fraunhofer-Gesellschaft. During the hardware technology realization, special care was taken to provide the highest performance and availability to the users. The local requirements at the institutes were kept to a minimum. This was achieved by realizing an ASP solution which did not require changes to the network structure, firewall configuration, or something similar at the institutes.

Special attention was paid to the user administration which, according to

certificate of the Fraunhofer-Gesellschaft, realizes a transparent representation of the user under consideration of the corporate directory after login. Thus, no additional account data (user name, password) is required. Security is ensured via the use of SSL-VPN based on the certificates of the Fraunhofer-Gesellschaft.

Contact

Dipl.-Phys. Thorsten Wack Phone (+49 2 08/85 98-12 78)

¹ ASP = Application Service Providing ² GefStoffVO = Gefahrstoffverordnung (Ordinance on Hazardous Substances)

Reference system at Fraunhofer UMSICHT: Locations of the Fraunhofer-Gesellschaft

INFORMATION TECHNOLOGY IN PROCESS ENGINEERING

Keeping an eye on all data with DAVID (Data Acquisition and Visualization Device)

Technical installations deliver data around the clock. Monitoring them costs time and money. The "Data Acquisition and Visualization Device" DAVID of Fraunhofer UMSICHT supports the monitoring of plants and objects and offers a quick overview over the status via process visualization. Users of the DAVID system save resources because they can comfortably access plant data any time from almost any location.

Humans are visual beings, and complex connections are much easier to understand in illustrations rather than in the written form. The trend of visualization has also entered the areas of process and automation technology from the

DAVID enables comfortable access to data any time from almost any location

pure specialty application to the final consumer: Ten years ago only the processes in power plants were visualized, whereas today even processes in private household heating systems are visualized.

Fraunhofer UMSICHT offers an integrated management tool for the implementation of specific monitoring requirements with its modularly constructed DAVID system. The individual modules exhibit extensive functionality from simple data recording to process visualization and description.

Reference system at Fraunhofer UMSICHT

www.solare-kaelte.de

Process visualization: Brine circulation loop of the solar plant at Fraunhofer UMSICHT

Contact

Dipl.-Ing. Andreas Schröder Phone (+49 2 08/85 98-11 31) Dipl.-Ing. (FH) Udo Piontek Phone (+49 2 08/85 98-11 30)

INFORMATION TECHNOLOGY IN PROCESS ENGINEERING

Hazardous material storage – Optimization of logistics and security

Automated storage location assessment

During the storage of hazardous materials, the storage facility operator has to pay attention to numerous logistical and regulatory requirements. Especially in storage facilities with broad hazardous material spectrums, conflicts between the economic (logistics) and regulatory (safety technology) goals can arise at times which can only be optimally solved by utilizing appropriate software systems for the storage facility operator. Currently, these systems only offer support for meeting the logistical requirements. The regulatory requirements have to be determined and tested for each hazardous material separately. Particularly, small and medium sized enterprises are having difficulties with this because they do not have the necessary experts at their disposal.

As part of the research project "Development of an assistance system for the

Simulation of arrangement options

enabling of environmentally sound and economically viable hazardous material storage" of the German Federation of Industrial Research Associations "Otto von Guericke" e.V. (AiF), Fraunhofer UMSICHT is compiling the regulatory requirements for hazardous material storage in the form of rules. In cooperation with Fraunhofer IML, a suitable structure is being developed which allows the coupling of the developed body of regulations with the commercially available storage administration software. Thus, the software is enhanced to consider the regulatory requirements in addition to logistics for the storage of hazardous materials. Additionally, the combined softwaresupported assessment of regulatory and logistical requirements allows the simulation of future storage occupancy scenarios. If regulatory requirements

prohibit the storage of individual materials (e.g. insufficient ventilation), the operator can determine the necessary modification of the storage facility under consideration of the existing storage situation with the support of the software. The output of the data is accomplished with 2D and 3D visualization methods.

Contact

Dipl.-Ing. Torsten Müller Phone (+49 2 08/85 98-12 84) Dipl.-Phys. Thorsten Wack Phone (+49 2 08/85 98-12 78)

The objective of our work is an application-oriented development of energy conversion plants for efficient and economic power, heat and cold supply. We use our competencies in the fields of energy conversion, renewable energy sources and "waste to energy/biomass to energy" in order to successfully position our customers in the dynamic energy and waste market.

Our work focuses on the treatment, combustion and gasification of heterogeneous material mixtures as well as on the extraction, cleaning and utilization of biogases and low BTU gases and their utilization in local combined heat and power plant systems.

Energy Technology

Waste to energy/Biomass to energy

Treatment and utilization of biogenous, low BTU gases for decentralized electricity generation

Combustion of low BTU gases in microturbines

Emission trading at Fraunhofer UMSICHT

ENERGY TECHNOLOGY

Waste to energy/Biomass to energy

Starting material: Industrial wastes of <300 mm (left) Refuse derived fuel production: Pellets (upper right) Fluff (lower right) The co-cumbustion of wastes and biomass as well as the separate use in RDF power plants leads to new technical challenges. Their solution is the focus of our work at Fraunhofer UMSICHT:

Decentralized, small combustion plant MARS[®] trial operation and expansion

The MARS[®] pilot plant is being operated by Fraunhofer UMSICHT and the Chair of Environmental Process Engineering and Plant Design of the University Duisburg-Essen as part of a research project funded by the NRW Ministry of Economic Affairs and industry partners. In 2006, the plant was operated with refuse derived fuels from industrial wastes and rejects from the paper industry. Now the plant also has automated fuel feeding and SNCR¹ technology. Additional investigations of biomass and industrial wastes are planned.

The MARS[®] plant: the new conveying technology can be seen (white), the water-cooled pipes for the grate (green), and the combustion chamber (red)

Model for the optimization of material flows during RDF production In cooperation with the Company

Tönsmeier, a model was developed for the prediction of material flows as well as product and reject qualities for RDF production. The model can be used to estimate the influences on the qualities of the material flows ahead of time.

Testing of fuels from waste

The Bundesgütegemeinschaft Sekundärbrennstoffe (Federal Quality Assurance Association for Solid Recovered Fuels) has established a proven sampling procedure for quality control of deconfectioned RDF. However, the sampling of fuels with large particle sizes is associated with great uncertainties. In this context, Fraunhofer UMSICHT has developed a sampling method that is based on a relatively large sample size basis.

Temperature dependent release of chlorine and sulfur compounds

In cooperation with the joint venture power generating plant Schweinfurt, a method was developed to test the temperature dependent release of chlorine and sulfur compounds in waste fractions. The goal is to derive the corrosion potential of the fuels.

Contact

Dr. rer. nat. Thomas Marzi Phone (+49 2 08/85 98-12 30) Dipl.-Ing. Asja Mrotzek Phone (+49 2 08/85 98-11 54)

¹ SNCR (Selective Non Catalytic Reduction) = Denitrification process for the reduction of nitrogen oxides (NO_x) in flue gas (Source = www.wikipedia.de)

ENERGY TECHNOLOGY

Treatment and utilization of biogenous, low BTU gases for dezentralized electricity generation

Trace element composition of biogenous gases

Biogenous low BTU gases (biogas, sewage gas, and landfill gas) are generated by anaerobic digestion of biomass or organic wastes. The energetic utilization of these gases in fuel cells, turbines, and engines reduces climate damaging emissions, and, given the most complete utilization, contributes to sustainable management. Biogases have to be cleaned from many pollutants by suitable processes, especially prior to energetic utilization in fuel cells (see figure). Typical contaminants in low BTU gases are organic sulfur, halogen, and silicon compounds. The installation of an efficient and tailored gas cleaning plant is dependent on three factors: the loading of contaminant trace amounts in the low BTU gases to be used, the intended energetic utilization, and economic factors. For example, landfill gas requires a completely different cleaning process as biogas due to its very complex contaminant loading (see figure).

Biogenous low BTU gases have to be cleaned to remove a variety of contaminants using the appropriate processes, especially prior to utilization in fuel cells.

Fuel cells exhibit a higher electric efficiency than gas engines which makes the future utilization of low BTU gases in fuel cells especially attractive. Nevertheless, fuel cells have higher low BTU gas purity requirements compared to standard power plants, and conventional gas cleaning processes (e.g. adsorption on activated carbon) have so far only generated average results. This is especially true for downstream fuel cell arrangements. The arising consequential costs reduce or endanger the economic viability of special gas utilization. On this basis, Fraunhofer UMSICHT is investigating innovative gas cleaning processes which are individually tailored to the gas and CHP¹ application. As part of the BMBF-funded "ReGasNet"² project, a catalytic landill gas cleaning process is being tested in the field in order to clean landfills gas to fuel cell quality.

Contact

Dipl.-Ing. Wolfgang Urban Phone (+49 2 08/85 98-11 24) Dipl.-Chem. Ing. Heiko Lohmann Phone (+49 2 08/85 98-11 97)

¹CHP = Combined heat and power ²More about the ReGasNet-Project can be found on pages 102-103

ENERGY TECHNOLOGY

Combustion of low BTU gases in microturbines

Schematic diagram of the Turbec T100 micro gas turbine

(Printed with permission by Turbec R&D AB, Malmö, Sweden) The Renewable Energies (EEG, April 2000) in Germany and comparable regulations in the neighboring European countries have led to a dynamic development in the utilization of low BTU gases in gas engines with combined heat, (cold,) and power generation for selling electricity into the grid. Despite these developments, low BTU gases with low heating values (HV < 14MJ/Nm³) are still used sparsely since gas engines and microturbines with conventional burner technologies cannot use these gases without cost intensive upgrading (increase of heating value by mixing with propane or natural gas). A joint project¹ should help provide a solution to that problem. The project encompasses the development and testing of new burner concepts with which it is possible to utilize low heating value gases in microturbines without upgrading.

First, the new burner concepts FLOX²

Design of the COSTAIR®-burner

(Printed with permission by Gas Heat Institute, Essen)

and COSTAIR³ were adapted to the combustion chamber geometry of a commercial micro gas turbine of the type T100 from the Italian manufacturer Turbec S.p.A., Ferrara and tested on an atmospheric burner test stand. Both burners achieved a stable operation with different gas mixtures (gas mixtures comprised CH₄, N₂, H₂, CO and CO_2 in varying compositions). The mixture with the lowest heating value with which a stable operation was still possible contained 15 Vol.-% methane in nitrogen ($HV = 5,4 \text{ MJ/Nm}^3$). The emission values for NO, und CO were significantly below the limits of the TA Luft (Technical Instructions on Air Quality Control) for many air-fuel ratio values.

Based on these successful preliminary research results, the new burner concepts will be installed one after the other into an existing micro gas turbine of the type T100 at Fraunhofer UMSICHT and tested under realistic operating conditions (integrated into the electricity and heating network) with a synthetically produced low BTU gas made from natural gas and nitrogen.

Contact

Dipl.-Ing. Tim Schulzke Phone (+49 2 08/85 98-11 55)

¹The research project is funded by the AiF under the project number 14472.

The alliance members of the project are: Gas Heat Institut, Essen (project coordination); Fraunhofer-Institute for Environmental, Safetey, and Energy Technology UMSICHT, Oberhausen; Department for Energy Plants and Energy Engineering of the Ruhr University, Bochum; Institute Nowum Energy of the Technical School, Department Jülich, Jülich; Waste Management and Waste Technology Departments of the University Duisburg-Essen, Essen

² FLOX = Flameless oxidation, patented by WS Wärmeprozesstechnik GmbH, Renningen, DE 10217913, EP 0685683, EP 0463218

³ COSTAIR = COntinued STaged AIR, patented by Gaswärme-Institut e. V., Essen, EP 0834040 B1, US 6,419,480 B2

ENERGY TECHNOLOGY

Emission trading at Fraunhofer UMSICHT

Only comprehensive strategies and innovative technologies will help protect the ecological balance

In the context of the implementation of the Kyoto Protocol adopted in 1997, emissions have been traded in the European Union since 2005. Fraunhofer UMSICHT has been working on the subject across various disciplines since 2001.

Similarly to the Ruhr area, projects in Eastern European countries have led to international recognition of coal mine methane utilization technology developed by Fraunhofer UMSICHT.

Many large German businesses are consulted by the institute on EU emission trading strategies and the process for the emission permitting application at the German Emission Trading Authority (DEHSt), Federal Environment Agency. A significant increase in the consulting activity is expected with the start of the second EU emission trading phase in 2007.

A reduction of greenhouse gases was agreed upon in the Kyoto Protocol

The activities in the area of emission trading are interdisciplinary at Fraunhofer UMSICHT and make market introduction easier. This holds especially true for energy technology innovations because additional revenues can be earned from emission trading by utilizing these innovations.

Emission trading will become particularly interesting in the countries of Southeast Asia because the production of biofuels is expected to increase significantly there in the next years. Fraunhofer UMSICHT supports a biogas project in Thailand which would not have been feasible without the use of project-related Kyoto mechanisms. Additional biogas projects are planned in Indonesia in which the use of wastewaters is in the foreground.

Contact

Dr.-Ing. Jürgen Meyer Phone (+49 2 08/85 98-14 17)

"Industrial societies need energy. In order to guarantee a sustainable and economic supply of energy more efficient plants for energy conversion and storage must be developed and integrated optimally into already existing supply systems."

[Dr.-Ing. Christian Dötsch, Business Unit Manager Energy Systems] Our objective is the intelligent integration of energy systems into existing and new supply structures as well as their efficient utilization. We combine fossil and regenerative energy sources with central and local conversion processes in order to create custom-made, economically and ecologically balanced systems which pave the way for local synergies.

Local regenerative polygeneration plants combined with district heating networks already represent such integrated systems: On the one hand, they open up the possibility of economic and CO_2 -neutral heating and cooling, and, on the other hand, they provide competitive products for the electricity market as a "virtual power plant".

Energy Systems

Energy efficiency in hospitals Decision support for energy management Cold from heat Storing energy efficiently

ENERGY SYSTEMS

Energy efficiency in hospitals

Compared: Hospitals with different characteristics

Hospitals require a large amount of energy for heating, warm water, ventilation, and the operation of medical equipment. An efficient energy supply secures the continuous operation and is important for the economic viability of the whole organization. If you are looking for savings, you have to know your supply structure.

Therefore, Fraunhofer UMSICHT is conducting a research project with 20 hospitals. Previously, detailed information on the operation of energy plants did not exist for most hospitals so that a determination of the efficiency was not possible. Based on extensive energy measurements, the project offers a wide database which contains much information about the efficiency of the energy plants. Energy saving potentials can be identified directly and improvement measures can be taken.

Load measurement as basis for the multi-criteria key figure comparison

First, measure - then, save

Using a multi-criteria approach, new key performance figures are developed which take the characteristics of the hospitals into consideration. The goal is to compare hospitals with different structures and to identify worthwhile savings potentials. Furthermore, bestpractice solutions show which savings measures have been successfully implemented for the best benchmarking candidates. The results of the project should form the basis for also achieving savings at other hospitals. In addition, it will be possible to transfer the benchmarking method to other industries such as foundries, breweries, to hotels as well as to production plants and in general for energy optimization.

Contact

Dipl.-Ing. Carsten Beier Phone (+49 2 08/85 98-14 16)

ENERGY SYSTEMS

Decision support for energy management

Energy management strategies that adapt reliably to competitive pressure, high price, volume, and financial risk, as well as changing political and social conditions are in greater demand than ever. Therefore, decisions in planning and business management of energy systems are increasingly supported by simulations, scenario analyses, and mathematical optimization.

The goal of the research initiative "Research Networks Fundamentals of Renewable Energies and Efficient Energy Utilization" of the BMBF (Federal Ministry of Education and Research) is to utilize renewable energies better. Together with the University of Duisburg-Essen, the Humboldt University Berlin, the Ruhr University Bochum, the Technical University Darmstadt, and the University of Dortmund, Fraunhofer UMSICHT is developing stochastic optimization processes for the design and operation of energy systems with a large share of power generation from renewables supply in the project "Innovative Modeling und Optimization".

One focus is the optimum coverage of fluctuating grid feed-in with technical tools (storage, controlling) and methods for decentralized energy and risk management.

The application of methods for analyzing energy systems for a better control of uncertainties is a main focus of the Fraunhofer Alliance "Energy" in which ten Fraunhofer Institutes combine their competencies in energy technologies and research. Their concentration is on control and operational behavior of complex systems such as the control of distributed power plants or the energy management coordination for electricity, natural gas, and heat/cold. In-house Fraunhofer research is offered to industry and the energy economy, accelerating innovation transfer into practice.

The European emission trading represents an important change in the framework of the energy business. Fraunhofer UMSICHT consults more than 25 businesses with the strategic and operational implementation of their CO_2 -management. CO_2 -monitoring and report generation as well as risk management are the focal points of our consulting activities.

Climate protection and resource conservation are the central requirements for a sustainable heat supply. The expansion of ecologically advantageous local district heating networks on the basis of decentralized combined heat and power and renewable energy sources (e.g. biomass) also has to meet economic criteria. As a part of the project "Rural District Heating", investment decisions concerning small-scale district heating networks are compared by the development and application of economic, ecological, and technical evaluation criteria.

Contact

Dipl.-Ing. Andrej Jentsch Phone (+49 2 08/85 98 -11 46) Dipl.-Ing. Michael Lucht Phone (+49 2 08/85 98 -11 83)

ENERGY SYSTEMS

Cold from heat

The development of energy technologies for the efficient energy conversion and storage are the focus of polygeneration

The growing worldwide demand for energy carriers combined with their decreasing availability is moving the energy markets. The energy economy is required to ensure supply security by economic interests and environmental protection. In contrast, it is the citizens and industry's responsibility to utilize the resource energy efficiently and to realize savings potentials. In the context of the innovation field "Polygeneration", Fraunhofer UMSICHT is developing technologies for the efficient conversion and storage of energy which will help to meet both requirements.

The growing cold demand is driving up global energy consumption and is straining the climate. In Germany, 6% of the primary energy consumption is associated with technical cold generation. Energy efficient technologies for the operation of electrically, mechanically, and thermally driven chillers are in high demand. The combined generation of electrical and thermal

Processes for cold generation

energy is especially efficient because the waste heat produced during electricity generation is used for heating or cooling by thermal cooling processes. Thus, thermal chillers, which are driven with waste heat or solar heat, make a significant contribution to a rational and sustainable energy supply. Fraunhofer UMSICHT develops and optimizes thermal cooling processes with regard to their implementation for combined heating, cooling, and power (CHCP) energy systems or for solar cooling.

A small-sized absorption chiller (cooling capacity < 10 kW_{th}, working fluids LiBr solution/water) driven by CHCP or solar heat is currently under development for decentralized building cooling.

As part of an Austrian-German cooperation project, a small, standardized steam jet ejector (cooling capacity 10 kW_{th}) is being developed in combination with a parabolic trough collector in order to offer an environmentally

friendly technology for decentralized solar cooling.

In addition, a compact steam jet ejector chiller fitted into a container (planned cooling capacity 100 kW_{th}) is being developed. It will be set-up on the institute's premises during the summer of 2007 as a demonstration plant. It will be driven by the on-site block-type combined heat and power plant as a CHCP.

Contact

Dr.-Ing. Peter Noeres Phone (+49 2 08/85 98-11 87) Dipl.-Ing. Peter Schwerdt Phone (+49 2 08/85 98-11 73) Dipl.-Ing. Clemens Pollerberg Phone (+49 2 08/85 98-14 18)

ENERGY SYSTEMS

Storing energy efficiently

Energy is a volatile quantity – to store it without losses requires intelligent technologies

Supply and demand are rarely matched. The energy economy is no exception here. Energy storage can help smooth out supply and demand and make energy available when it is needed. Fraunhofer UMSICHT develops and optimizes technologies which store energy so efficiently that as much as possible of it can be used.

Storage of electrical energy

Storing electrical energy has always been one of the big challenges of the energy technology field and is currently gaining the status of key technology during times of increased utilization of intermittent renewable energies. The expansion of renewable energy generation has resulted in growing temporary discrepancies between energy generation and utilization: Peak loads but also an oversupply of energy are the consequences leading to problems in energy supply networks.

Classification of heat storage types

Electrical energy storage is ideal for smoothing peak loads, overcome brief grid problems, as well as balancing supply and demand. The business unit Energy Systems heads the Fraunhofer Alliance project for the development of decentralized energy storage units which are scalable with regard to their capacity and storable energy.

Storage of thermal energy

If thermal energy (heat) is to be stored, it is accomplished via a storage medium. Conventional thermal storage technologies in the cold supply are chilled water buffers and ice storage units. However, these have a low energy density (chilled water buffer), or they require a charging temperature significantly below 0 °C (ice storage) which has a negative effect on the performance of the chiller. Phase Change Slurries (PCS)¹ as a heat carrier medium offer interesting opportunities for cold storage and distribution. Fraunhofer UMSICHT offers CryoSol[®], an ice slurry (for more details, please see Annual Report 2005) as a PCS. For the temperatures range above 0 °C, cold carriers on the basis of paraffin/water emulsion/suspension are investigated which can be used for air conditioning. The goal of the investigation is the development of a PCS which can be used in conventional cooling network systems for performance enhancement.

Contact

Dr.-Ing. Christian Dötsch Phone (+49 2 08/85 98-11 95) Dipl.-Ing. Li Huang Phone (+49 2 08/85 98-11 49) Dipl.-Ing. Clemens Pollerberg Phone (+49 2 08/85 98-14 18)

¹ PCS are suspensions or emulsions made of a Phase Change Material (PCM) and a liquid phase which can be pumped through pipes with the PCM in a solid or liquid state and can be heated or cooled in conventional heat exchangers. These media use latent and sensible heat for heat storage. The resulting higher energy density reduces storage volumes and pumping power requirements.

We examine the use of materials, energy, goods, knowledge and human resources in processes, process chains and value added networks and find ways to optimize them according to economic, ecological and technical-infrastructural criteria.

The focus of our R&D-services is on production systems, locations, regions and their integration into larger networks. Our objective is to use resources in such a way that they lead to progress and innovation.

We combine modern management instruments with the know-how on resources and technologies. The results enter into strategic studies and consulting services focussing on resources management, waste management, renewable energies and innovation management. Thus, technical and infrastructural processes and procedures can be optimized.

Resources Management

European Waste Sector Assistant EUWAS – Knowledge and information for waste management in a "one-stop-shop"

Potential study: The path to individual decisions

BioRegio: Strategies for the sustainable energetic utilization of biomass in chosen model regions

Network for gas treatment technologies and processes "ReGasNet"

RESOURCES MANAGEMENT

European Waste Sector Assistant EUWAS — Knowledge and information for waste management in a "one-stop-shop"

International collaboration within Europe requires availability and exchange of knowledge and information. The accession of the first ten Eastern European states to the European Union has significantly increased the amount of information that needs to be processed but also the demand for know-how, a trend that is expected to continue in the foreseeable future. This concerns European administrative processes, data and information for solicitations, and European programs in the area of municipal and industrial waste management, among others. In order to meet this informational demand. Fraunhofer UMSICHT, in concert with seven other European partners is developing the "EUWAS¹ – European Waste Sector Assistant" platform: a target groupspecific, IT-supported, multi-lingual information portal for businesses and governments in the waste management field.

EUWAS: Introduction in "Best Available Technology"

The portal provides industry relevant contents for five selected countries (Estonia, Germany, Latvia, Lithuania, and Poland), and explains laws and directives of European waste management.

In addition to personalized registration, the following services can be found at EUWAS, among others:

- The waste management services provide a structured representation of the national (European) processes/ operations and general waste management data.
- The suppliers and co-operation exchange serves to exhibit one's own service spectrum presentation as well as helping bring together partners for mutual projects.
- The **tender platform** offers a collection of national and European tenders with simultaneous support with the completion of a proposal/tender.

Step-by-step guide

97

• The area **BAT**²/**Best Practice** offers an up-to-date selection of best available technologies as well as national best practice examples.

In addition, the portal distinguishes itself by providing multiple language support and user-friendly support functions such as step-by-step guides, educational modules, and structured information databases. An open source based content management system forms the basis of the portal.

Contact

Dipl.-Geogr. Simone Krause Phone (+49 2 08/85 98-11 36)

¹Co-financed through the European program eContent/Distribution measures are funded by the Federal Environment Agency ²BAT: Best Available Technology

RESOURCES MANAGEMENT

Potential study: The path to individual decisions

These are the potentials for the utilization of bioenergy

The business unit Resources Management lays groundwork for individually suited project and investment decisions for the industrial and public sectors with strategic potential studies and roadmaps. The utilized analysis and evaluation methods are tailored, advanced further, or developed completely new for the given objective. Whether based on estimations or concrete market data: Each potential study exhibits strategic measures in order to secure future decisions

Bioenergy is en vogue as an alternative and sustainable energy source. However, which raw material, utilization, and infrastructure potentials really exist in a specific area in order to venture the investment into bioenergy? These questions were answered for several companies from the energy sector and assessed based on market data and political trends. Biogas generation and feeding into the grid as well as the industrialization of bioenergy were the

Cost/benefit assessment in waste management

focal points. The results were generated using expert workshops, in-house data collection and analysis tools for energy potentials, and GIS¹-supported analyses.

In cooperation with Fraunhofer IPA, a strength and weakness profile regarding regenerative energy was developed for the East Frisian City of Emden. Alternative courses of action, which should contribute to the concept of a future-oriented and sustainable energy economy for Emden, were validated and complemented by expert opinions.

In recent years, several studies for cost/ benefit assessments in waste management have been carried out on European level. They often assessed various material streams and non-standardized sets of ecological and economical parameters. Contracted by the Federal Environment Agency, Fraunhofer UMSICHT analyzed the comparability and results of the studies. This resulted in a better assessment scheme for the domestic waste which was tested for mechanical-biological treatment and incineration.

The environmental impact of a PC and a Thin Client supported supply of IT services was compared for an IT business. As part of the project, the direct consequences of the manufacturing, use, and disposal phases were taken into consideration using secondary data, model calculations, and in-house measurements.

Contact

Dr.-Ing. Hartmut Pflaum Phone (+49 2 08/85 98-11 71) Dipl. Wirt.-Ing. (FH) Markus Hiebel (MSc) Phone (+49 2 08/85 98-11 81)

¹GIS: Geographic Information System

RESOURCES MANAGEMENT

BioRegio: Strategies for the sustainable energetic utilization of biomass in chosen model regions

Wood harvest in a forest

Energy en masse: Pigs as manure producers

As part of the BioRegio Project "Strategies for the sustainable energetic utilization of biomass", which was coordinated by the Institute for Future Energy Systems (IZES), regional biomass potentials were analyzed and utilization strategies were developed. The research partners of the project (Fraunhofer UMSICHT, Eco-Institue, Institute for Energy and Environment, Institute for Applied Material Flow Management) investigated innovative bioenergy technologies on the basis of six specific model regions in Germany and determined biomass potentials on a regional level from 12/2004 until 3/2007. One significant goal was to ensure the transferability of the results to other regions.

In 2006, Fraunhofer UMSICHT created and coordinated a network in the Emscher-Lippe region, which is made up of the district of Recklinghausen as well as the cities of Bottrop and Gelsenkirchen. The theoretical biomass potential was determined in the forestry, agriculture

Bioenergy technology with potential: Biogas plants

and waste sectors. Overall, a theoretical biomass potential of 3 520 TJ¹/a is available. In the agricultural sector, the potential amounts to 404,5 TJ/a (for example from liquid/solid manure and hay). In the forestry sector, the potential is approximately 558,8 TJ/a (represents around 31 750 $t_{dr/}$ a of wood). The waste sector exhibited the largest potential with about 2 585 TJ/a. It encompassed biowaste, waste wood, and sewage and landfill gas.

The comparatively large biomass amount in the waste sector of the Emscher-Lippe region can be attributed to the high population density and to large plants such as the central landfill Emscherbruch and the wastewater treatment plant in Bottrop. Aside from the energetic utilization of already existing biomass, the development of new biomass sources is a crucial prerequisite for the increase of the renewable energy portion of the overall energy consumption. The region is currently represented in a model in order to calculate various scenarios, e.g. for the year 2020, and to assess the influence of different biomass utilization options. It is planned to develop a roadmap with recommandations on actions from the project experiences in order to sustainably support the development of additional regional energetic biomass utilization.

Additional information on the BioRegio project, which was funded by the Ministry for Environment, Nature Conservation, and Nuclear Safety, can be found at: www.bioregio.info.

Contact

Dipl. Wirt.-Ing. (FH) Markus Hiebel (MSc) Phone (+49 2 08/85 98-11 81) Dipl.-Ing. Esther Stahl Phone (+49 2 08/85 98-11 58)

¹TJ: Terajoule, which means 10¹² or 1 trillion Joule

RESOURCES MANAGEMENT

Network for gas treatment technologies and processes "ReGasNet"

Concrete network activities: Meeting in March 2006 at Fraunhofer UMSICHT

"The share of regenerative low BTU gases of the total energy supply portfolio should increase significantly". This is the goal of 14 German and Polish research organizations that have come together under the management of Fraunhofer UMSICHT to form a network for gas treatment technologies and processes "ReGasNet¹".

The range of the investigated low BTU gases includes biogas, coal mine methane, landfill gas, sewage gas, and raw gas from biomass. During the first phase of the network activities, a total of 15 research and development activities along promising utilization paths will be realized. These include, among others:

- the development and optimization of appropriate trace gas analysis for biogases,
- the development of catalytically oxidative desulphurization processes, both polishing and general,

Everything fits together somehow: Technical systems form complex networks

- the investigation and improvement of polishing and general desulphurization processes,
- the hydrogen production through anaerobic fermentation or in-situ separation from allothermic steam gasification,
- different high temperature gas cleaning processes and
- the methanation of raw gas from biomass gasification.

At the same time, a system-analytical assessment of the research results and the state of the art is performed.

The utilization of different tools (e.g. regular project meetings, use of project internal website) helps connect the participants with one another. This way the already existing experience and expertise from other partners can be utilized for the research work. In addition, the bi- and multi-lateral discussions of the insights gained contribute significantly to the success of the work.

The partners have come a significant step closer to the goal of identifying promising technologies and eliminating hurdles and knowledge gaps that could hinder their implementation. The research work of the first phase of the network activities are nearing their conclusion. In parallel, the development of promising strategies to determine further development approaches are currently under way.

Contact

Dr.-Ing. Barbara Zeidler Phone (+49 2 08/85 98-11 43) Dr. rer. nat. Christoph Unger Phone (+49 2 08/85 98-14 10)

¹ ReGasNet funded by the Federeal Ministry for Education and Research (BMBF).

"The most useful books are those of which readers themselves compose half."

Voltaire (1694-1778), Philosophical Dictionary

With this quotation in mind we wish you many inspiring moments.

You may search for Fraunhofer publications and patents online at: http://publica.fraunhofer.de/starweb/publica/index.htm

Names, Data, Events

Publications Selected Clients and Contacts Patents Spin-offs Circle of Friends and Patrons How to Find Us Guidelines The Fraunhofer-Gesellschaft Board of Trustees Imprint

Publications

The following survey only includes lectures and publications which were written and/or delivered in English. For a complete bibliography, see the German version of our annual report.

Danzig, J.; Jelen, E.; Ehrenstein, U.; Deerberg, G.: Applications of supercritical fluids as a areen solvent

(International Exhibition-Congress on Chemical Engineering, Environmental Protection and Biotechnology (ACHEMA) <28, 2006, Frankfurt/ Main>)

In: Gesellschaft für Chemische Technik und Biotechnologie -DECHEMA-: ACHEMA 2006, 28th International Exhibition-Congress on Chemical Engineering, Environmental Protection and Biotechnology. Abstracts of the congress topics: Frankfurt am Main, 15-29 May 2006. Frankfurt/Main: DECHEMA, 2006, p. 118

Deerberg, G.; Grän-Heedfeld, J.; Hennig, T.: Mixing characteristics of a T-shaped micromixer

(International Exhibition-Congress on Chemical Engineering, Environmental Protection and Biotechnology (ACHEMA) <28, 2006, Frankfurt/ Main>)

In: Gesellschaft für Chemische Technik und Biotechnologie -DECHEMA-: ACHEMA 2006, 28th International Exhibition-Congress on Chemical Engineering, Environmental Protection and Biotechnology. Abstracts of the congress topics: Frankfurt am Main, 15-29 May 2006. Frankfurt/Main: DECHEMA, 2006, p. 54

Doetsch, C.; Jentsch, A.:

District heating (DH) in areas with low heat demand density (HDD): A chance for the integration of renewable energy sources (RES) (International Symposium on District Heating and Cooling <10, 2006, Hanover>) In: Arbeitsgemeinschaft für Wärme und Heizkraftwirtschaft e.V. -AGFW-, Frankfurt: 10th International Symposium on District Heating and Cooling 2006: 3-5 September 2006 in Hanover, Conti-Campus Hanover University of Technology, Hanover/Germany. Frankfurt, Main: AGFW, 2006, 8 pp.

Dudlik, A.; Neuhaus, T.*:

Experiments and comparing calculations on thermohydraulic pressure surges in pipes In: Kerntechnik, Vol. 71 (2006), No. 3, pp. 87-94 *TÜV Hamburg

Fänger, C.; Wack, H.; Ulbricht, M. U.*: Macroporous Poly(N-isopropylacrylamide) hydrogels with adjustable size "cut-off" for the efficient and reversible immobiliization of biomacromolecules

In: Macromolecular bioscience, Vol. 6 (2006), No. 6, pp. 393-402

*Universität Duisburg-Essen, Institut für Technische Chemie

Marzi, T.; Beard, A.*:

The ecological footprint of flame retardants over their life cycle - A case study on the environmental profile of new phosphorous based flame retardants

(Flame Retardants Conference <2006, London>) In: European Flame Retardants Association -EFRA-: Flame Retardants 2006. Proceedings of the Flame Retardants: Conference held at the Queen Elizabeth II Conference Centre, Westminster, London, UK, 14-15 February 2006. London: Interscience Communications, 2006, pp. 21-32 *Clariant Products, Hürth

Marzi, T.; Beard, A.*: The ecological footprint of flame retardants. A case study

In: Speciality chemicals magazine. Global application of organic chemistry, Vol. 26 (2006), No. 6, pp. 28-31 *Clariant Products, Hürth

Pollerberg, C.; Noeres, P.; Doetsch, C.: Solar driven steam jet ejector chiller

(Internationales Symposium für Sonnenenergienutzung <2006, Gleisdorf>) In: Arbeitsgemeinschaft Alternative Energien -AAE-: Gleisdorf Solar 2006, Internationales Symposium für Sonnenenergienutzung: 6-8 September 2006, Gleisdorf, Austria Gleisdorf: AAE, 2006, pp. 219-229

Pollerberg, C.; Noeres, P.; Doetsch, C.:

Solar driven steam jet ejector chiller (Italian Thermotechnical Association (National Congress) <61, 2006, Perugia>) In: Italian Thermotechnical Association -ATI-: 61st ATI National Congress 2006. International Session "Solar Heating and Cooling": Held in Perugia (Italy) from 12 to 15 September 2006. Perugia: Morlacchi, 2006, pp. 81-86

Pollerberg, C.; Doetsch, C.:

Phase changing slurries in cooling and cold supply networks

(International Symposium on District Heating and Cooling <10, 2006, Hanover>) In: Arbeitsgemeinschaft für Wärme und Heizkraftwirtschaft e.V. -AGFW-, Frankfurt: 10th International Symposium on District Heating and Cooling 2006: 3-5 September 2006 in Hanover, Conti-Campus Hanover University of Technology, Hanover/Germany. Frankfurt, Main: AGFW, 2006, Sektion 8a, 13 pp.

Robert, J.; Gehrke, I.; Deerberg, G.: Development and 3D optical characterization of novel inorganic micro filters

(International Conference on Inorganic Membranes (ICIM) <9, 2006, Lillehammer>) In: Bredesen, R.: Inorganic membranes. Proceedings of the 9th International Conference on Inorganic Membranes 2006: Lillehammer, Norway, June 25-29, 2006. Oslo: SINTEF, 2006, p. 50

Schultz, H. J.*; Deerberg, G.; Fahlenkamp, H.**: New perspectives for the extraction of oceanic gas hydrates

In: Geotechnologien Science Report, (2006), pp. 138-151

- *Celanese Chemicals Europe GmbH
- **Universität Dortmund

Seydel, P.; Blömer, J.; Bertling, J.:

Modeling particle formation at spray drying using population balances

In: Drying technology, Vol. 24 (2006), No. 2, pp. 137-146

Spangardt, G.*; Wolf, C.**; Horn, C.***; Lucht, M.: Decision making in the emissions-market under uncertainty

In: Antes, R.: Emissions trading and business. Heidelberg: Physica-Verlag, 2006, pp. 119-132 *RWE AG, Essen

**E.ON Ruhrgas AG, Essen

*** Adsorption Technology Research and Development Linde AG, Hoellriegelskreuth

Names, Data, Events Selected Clients and Contacts

Selected Clients and Contacts

R

A. und E. Lindenberg GmbH & Co. KG, Bergisch-Gladbach Abfallbehandlung Nord GmbH, Bremen Abwasserverband Kempten/Lauben (Allgäu) AdFiS Adsorptive Filtersysteme GmbH, Teterow AEG SVS Power Supply Systems GmbH, Warstein-Belecke AEE Intec, Gleisdorf, Austria AGR Deponienachsorge GmbH & Co. KG, Herten AgriCapital GmbH, Greven AiF Arbeitsgem. industrieller Forschungsvereinigungen Otto von Guerike e.V., Berlin Airplanko, Bernd Michalak, Oberhausen Albutec GmbH, Rostock Alfried Krupp von Bohlen und Halbach Krankenhaus gGmbH, Essen Alpes Lasers, Neuchâtel, Switzerland ALPINE-ENERGIE Deutschland GmbH, Biberach ALSTOM GmbH, Frankfurt a. M. Altenburger Maschinen Jäckering GmbH, Hamm Andritz AG, Graz, Austria Apex Energy Teterow GmbH, Teterow Aqua-Society GmbH, Herten Arbeitsgemeinschaft Qualitätsmanagement Biodiesel e. V., Berlin Architektenpartner Reuss & Reuss, Memmelsdorf ASZ GmbH & Co. KG, Bad Rappenau A-TEC Anlagentechnik GmbH, Duisburg Aufbereitungstechnologie Noll GmbH, Bobingen AVG Abfall-Verwertungs-Gesellschaft mbH, Hamburg AVIT Hochdruck Rohrtechnik GmbH, Essen Axima Refrigeration GmbH, Lindau

Baerlocher GmbH, Unterschleißheim Barcelona Semiconductors SL, Barcelona, Spain BASF Aktiengesellschaft, Ludwigshafen Bau- und Liegenschaftsbetrieb NRW, Dortmund Bayer AG, Leverkusen Bayer Schering AG, Berlin Bayerische Motorenwerke AG, Munich Bayer Technology Services GmbH, Leverkusen BAYERNOIL Raffinerieges. mbH, Ingolstadt Beer GmbH, Hellenthal benefit GmbH, Hirschau BGA Entwicklungs-Verwaltungsges. mbH, Willich BHC-Gummi-Metall GmbH, Meckenheim Biocompatibles International PLC, Farnham, Great Britain Bioenergie Odendorf GmbH & Co. KG, Swisttal

Bioenergie Steinfurt GmbH & Co. KG, Steinfurt BioKraft Südpfalz GmbH & Co. KG, Freckenfeld Biomasse Heizkraftwerk Eisenberg GmbH, Recklinghausen

Biomasse-Kraftwerk Güssing GmbH & Co. KG, Güssing, Austria

Biomind, Fröndenberg/Ruhr

Biostadt Hennstedt GmbH & Co. KG, Hennstedt

BioWend GmbH & Co. KG, Lüchow

BIOXY B.V., S'-Gravenhage, Netherlands

BKB Hannover GmbH, Hanover

Blatzheimer Sand- und Kieswerke Jakob H. G. Nowotnik e.K., Kerpen

BKT Energietechnik GmbH, Oberhausen

BKV Beteiligungs- und Kunststoffverwertungsgesellschaft mbH, Frankfurt a. M.

- Borealis GmbH, Linz, Austria
- Borromäus-Hospital, Leer

Brandschutz u. Bauwesen GmbH, Niestal

Britta Loick Consulting GmbH, Dorsten

- Brunel GmbH, Mannheim
- Buchhandlung und Verlag K.-M. Laufen, Oberhausen
- Bückmann GmbH, Mönchengladbach
- Büro für Technikfolgen Abschätzung beim Deutschen Bundestag (TAB), Berlin
- build.Ing Gesellschaft für Planen, Bauen, Betreuen mbH. Berlin
- Bundesamt für Bauwesen und Raumordnung, Berlin
- Bundesamt für Wirtschaft und Ausfuhrkontrolle (BAFA), Eschborn
- Bundesamt für den Zivildienst, Cologne
- Bundesministerium für Bildung und Forschung, Berlin
- Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit, Berlin
- Bundesministerium für Ernährung,
- Landwirtschaft und Verbraucherschutz, Berlin Bundesministerium für Wirtschaft und Technologie, Berlin
- Button Energy/Knopf Glastechnik, Vienna, Austria
- BWS Technologie gGmbH, Grevenbroich
- CarboTech AC GmbH, Essen
- Caritas Wohn- und Werkstätten Niederrhein gGmbH, Moers
- Carl Bechem GmbH, Hagen
- CentrO. Management GmbH, Oberhausen Centrum für internationale Migration und Entwicklung (CIM), Frankfurt a.M.
- Chemion Logistik GmbH, Krefeld
- Ciba Spezialitätenchemie Lampertheim GmbH, Lampertheim
- Clariant Products (Deutschland) GmbH, Hürth Clariant, Masterbatches (Deutschland) GmbH, Ahrensburg
- Cocoon Club GmbH & Co. KG, Frankfurt
- Cornpack GmbH & Co. KG, Teterow
- Cornpack GmbH & Co. KG, Dorsten

Creative Concepts & Projects Establishment, Schaan, Liechtenstein

CUT Membrane Technology GmbH & Co. KG, Erkrath

- D
- D1 Deutsche Funkturm GmbH
- DaimlerChrysler AG, Berlin
- DaimlerChrysler AG, Stuttgart
- Dalkia GmbH, Neu-Isenburg DataPool engineering GmbH, Oberhausen
- Degussa AG, Frankfurt a. M.
- DELU AG, Gladbeck
- Deron Systemhaus GmbH, Stuttgart
- DBU Deutsche Bundesstiftung Umwelt, Osnabrück
- DECHEMA Gesellschaft für chemische Technik und Biotechnologie e.v., Frankfurt a. M.
- Deutsche Gesellschaft für Technische Zusammenarbeit GTZ GmbH, Eschborn DMT GmbH, Essen

- Deutsche Rockwool-Mineralwoll GmbH & Co. oHG, Gladbeck
- Deutsche Steinkohle AG, Herne
- Deutscher Bundestag, Berlin
- DEUTZ Power Systems GmbH & Co. KG, Mannheim
- Di Matteo Förderanlagen GmbH & Co. KG, Beckum
- Dipl.-Ing. Heinrich Mörchen, Schloss Holte-Stukenbrock
- Dipl.-Ing. Wolfgang Thaler, Kempen
- DKR Deutsche Gesellschaft für Kunststoff-Recycling mbH, Cologne
- DLR, Bonn
- Dortmunder Energie- und Wasserversorgungs-GmbH, Dortmund
- Dr.-Ing. h.c.F. Porsche AG, Stuttgart
- Dr.-Ing. h.c.F. Porsche AG, Weissach
- Dr.-Ing. habil. Brachetti, Springe
- Dr. Könemann, Deichmann, Gornemann,
- Rauwolf, Stanciu & Partner, Immenhausen Drewag Stadtwerke Dresden GmbH, Dresden
- DVGW Deutsche Vereinigung des Gas- u.

EADS Deutschland GmbH Forschung, Munich

Wasserfaches e.V. twV, Bonn

EBRO Armaturen Gebr. Bröer GmbH, Hagen EcoEnergy Gesellschaft für Energie- und Umwelttechnik mbH, Walkenried Ecoprog e.K., Cologne EDI Exploration Drilling International GmbH, Haltern am See E. J. M. Abbenhaus GmbH, Clausthal-Zellerfeld Elastogran GmbH, Lemförde Electricidad Industrial Salvio Buquets SA, Barcelona, Spain

107

- EnBW Energie Baden-Würtemberg AG,
- Karlsruhe
- ENR Energiegesellschaft nachwachsender Rohstoffe mbH, Dorsten
- E.ON Engineering GmbH, Gelsenkirchen
- E.ON Ruhrgas AG, Essen
- emano Kunststofftechnik GmbH, Teterow
- Emil Lihotzky Maschinenfabrik, Plattling
- Emissions-Trader ET GmbH, Alpen
- Energieversorgung Gera GmbH, Gera
- EPEB GmbH, Sonthofen
- ERNST KOCH GmbH & Co. KG, Hemer
- ESBI ENGINEERING & FACILITY MANAGEMENT
- LTD, Dublin, Ireland
- ESP-Chemie, Premnitz
- EUS Gesellschaft für innovative Energieumwandlung und -speicherung mbH, Gelsenkirchen
- EUS GmbH, Dortmund
- Evangelisches Krankenhaus Bergisch-Gladbach GmbH, Bergisch-Gladbach
- Evangelisches und Johanniter Klinikum Niederrhein Duisburg/Dinslaken/Oberhausen GmbH
- Evang. Krankenhausverein zu Aachen-Luisenhospital, Aachen
- Evang. Krankenhaus Kalk gGmbH, Cologne
- EVD Entwicklungsgesellschaft für Verbundmaterial Diez mbH, Diez
- EVO Energieversorgung Oberhausen AG, Oberhausen
- ewmr Energie- und Wasserversorgung Mittleres Ruhrgebiet GmbH, Bochum

Names, Data, Events Selected Clients and Contacts

F

- FNR Fachagentur Nachwachsende Rohstoffe e. V., Gülzow
- farmatic biotech energy ag, Nortorf
- FarmTech BeteiligungsGmbH, Dorsten FEBA - Forschung und Engineering für biotechn.
- Anwendungen GmbH, Willich Felix Schoeller jr. Foto- und Spezialpapiere
- GmbH & Co. KG, Osnabrück
- FernUniversität in Hagen, Hagen
- Fernwärme-Forschungsinstitut e. V. FFI, Hemmingen Fernwärmeversorgung Niederrhein GmbH, Dinslaken
- Filterwerk Mann+Hummel GmbH, Ludwigsburg FISIA Babcock Environment GmbH, Gummersbach FITR e. V., Weimar
- FKuR Kunststoff GmbH, Willich
- Forschungszentrum Karlsruhe GmbH, Außenstelle Dresden
- Forschungszentrum Jülich GmbH, Jülich Fraunhofer TEG, Melton Mowbray,
- Great Britain
- Frey & Lau GmbH, Henstedt-Ulzburg

G

- Gartenbauzentrum Straelen Landwirtschaftskammer NRW, Straelen
- GAS. Gesellschaft für Antriebs- u. Steuertechnik mbH, St. Georgen
- G.A.S. Energietechnologie GmbH, Krefeld Gaswärme-Institut e.V., Essen
- 108 Gaswärm GDX Auto
 - GDX Automotive Rehburg GmbH & Co. KG, Rehburg-Loccum
 - GE Healthcare Bio-Sciences, Freiburg im Breisgau GEA Happel Systems Engineering GmbH, Herne GEA Luftkühler GmbH, Bochum
 - GEA Wiegand GmbH, Ettlingen
 - GEBA Kunststoffcompounds GmbH, Ennigerloh
 - GEFAS Ges. für Anlagenservice und Sicherheitstechnik mbH, Oberhausen
 - Gelsenwasser AG, Gelsenkirchen
 - Gemeinschaftskraftwerk Schweinfurt GmbH, Schweinfurt
 - Gesellschaft zur Förderung von Medizin-, Biound Umwelttechnologien e. V., Fachsektion »Funktionelle Schichten«, Dresden
 - GNS Gesellschaft für Nuklear-Service mbH, Essen
 - GET mbH Gesellschaft für Energietechnik, Lobenstein
 - GfEM Ges. für Energiemanagement mbH, Berlin GIGATON GmbH, Viernheim
 - GKT Gummi- und Kunststofftechnik Fürstenwalde GmbH, Fürstenwalde/Spree
 - Gleitsmann Security Inks GmbH, Berlin
 - Goldschmidt GmbH, Essen
 - G.R.A.S. Sound & Vibration A/S, Vedbaek, Denmark
 - Great Lakes Chemical Corporation, Manchester, Great Britain
 - Groep Machiels Recycling Technology, Wilsele-Leuven, Belgium
 - Günter Schulze Düding, Steinfurt

Annual Report 2006

- GVT Forschungs-Gesellschaft Verfahrens-Technik e. V., Frankfurt a. M.
- GWE Wärme- und Energietechnik GmbH, Osterode

Н

H. Anger's Söhne Bohr- und Brunnenbauges. mbH, Hessisch Lichtenau Haas Anlagenbau GmbH, Chieming Hahn Kunststoffe GmbH, Hahn-Flughafen Hauni Maschinenbau AG, Hamburg Haus der Technik e.V., Essen Heinrich Fahlenkamp GmbH & Co. KG, Bruchhausen-Vilsen Henkel KGaA, Düsseldorf Hennecke GmbH, Sankt Augustin Hertener Stadtwerke GmbH. Herten HgCapital, London, Great Britain Hobart GmbH, Offenburg Hochschule Niederrhein, Krefeld Honeywell Speciality Chemicals Seelze GmbH, Seelze, Germany Hosokawa Micron GmbH, Cologne Hubert Loick VNR GmbH, Dorsten-Lembeck Humana Milchunion eG, Herford Hündgen Entsorgungs GmbH & Co. KG, Swisttal Hüttenwerke Krupp Mannesmann GmbH, Duisburg HV Umweltservice GmbH, Swisttal-Ollheim HYDAC Accessories GmbH, Sulzbach

- ILBau Illertaler Biomasse Bau- und Eigentums GmbH & Co. KG, Stuttgart IEV-Industrie, Lübeck IGEL Technology GmbH, Bremen
- IGW Ingenieurgemeinschaft Witzenhausen Fricke & Turk GmbH, Witzenhausen
- imat uve gmbh, Mönchengladbach
- IMG Dr. Manfred Peritsch, Graz, Austria
- Immobilien Strebersdorf Verwaltungsgesellschaft m.b.H., Vienna, Austria
- Impregion AG, Lüneburg
- INDACO Manufacturing Ltd., Scarborough, Canada
- INEOS Phenol GmbH & Co. KG, Gladbeck Informationszentrum Entwässerungstechnik
- Guss IZEG e.V., Bonn
- infra fürth gmbH, Fürth
- Innovatherm Gesellschaft zur innovativen Nutzung von Brennstoffen mbH, Lünen

Instytut Ekologii Terenów Uprzemyslowionych, Katowice, Poland

- Institut für Energetik und Umwelt GmbH, Leipzig Institut für Energie und Umwelttechnik e.V.,
- IUTA Duisburg
- INSTYTUT ENERGETYKI, Warszawa, Poland Intensiv-Filter Deutschland GmbH & Co. KG, Velbert
- Interessenverband Grubengas e. V., Rhede INTERMET Neunkirchen GmbH, Neunkirchen/Saar Intier Automotive Eybl Interiors GmbH, Straubing Intier Automotive Interiors, Alzenau i. UFr. Invenio Kunststoff Engineering GmbH, Erwitte
- ISO-mk Innovation, Berlin
- Itasca Consults GmbH, Gelsenkirchen IUQ Dr. Krengel GmbH, Grevesmühlen
- IZES Institut für ZukunftsEnergieSysteme gGmbH, Saarbrücken

Jackon Insulation GmbH, Mechau Jenbacher GmbH & Co. OHG, Jenbach Jenbacher Energiesysteme S.L., San Sebastian de los Reyes, Spain Jesco GmbH, Wedemark Johanniter-Krankenhaus Rheinhausen, Duisburg Johnson Controls GmbH, Burscheid Johnson Controls Interiors GmbH & Co. KG, Grefrath Joline GmbH & Co. KG, Hechingen Josef Baust Holzbetriebs GmbH, Eslohe K

KBG Kommunalbetrieb Goch, Goch

- KEC Kölbl Engineering und Consulting GmbH, Kamp-Lintfort
- Kelman Limited, Lisburn, Northern Ireland
- KHT Fahrzeugteile GmbH, Grevenbroich

Kiriaki Michaludi, Nikiti, Greece

- Kisters AG, Aachen
- Kliniken Maria Hilf GmbH, Mönchengladbach Klinikum Emden Hans-Susemihl-Krankenh.
- gGmbH, Emden
- Kluber Lubrication Benelux S.A.-N.V., Dottignies, Belgium
- Knappschaftskrankenhaus, Bottrop
- Kocks Consult GmbH, Koblenz
- Kommission der Europäischen Union, Brussels, Belgium
- KonnexX Unternehmensberatungsgesellschaft mbH, Güstrow
- Korn GmbH, Albstadt
- Kreiskrankenhaus Gummersbach GmbH, Gummersbach
- Kreisverwaltung Recklinghausen, Recklinghausen Kreisverwaltung Neuwied, Linkenbach

t

- Lakufol Kunststoffe GmbH, Henfenfeld Landesbank Hessen-Thüringen, Frankfurt a. M. Landesumweltamt Nordrhein-Westfalen, Essen
- Landgericht Chemnitz, Chemnitz
- Landgericht Heilbronn, Heilbronn
- Landgericht Mannheim, Mannheim
- LBD-Beratungsgesellschaft mbH, Berlin
- LEG Standort- und Projektentwicklung Köln
- GmbH, Cologne Lichtwer Pharma GmbH. Berlin
- Linde AG, Unterschleißheim
- Lippeverband, Essen
- Logo tape Gesellschaft für Selbstklebebänder mbH & Co. KG, Harrislee
- Loick AG, Dorsten
- Ludmillenstift Meppen, Meppen
- LÜNTEC Förderverein e.V., Lünen
- Lurgi Metallurgie GmbH, Oberursel
- Lurgi Metallurgie GmbH für Forschung und Entwicklung, Frankfurt a. M.

Μ

Machinefabriek Dinnissen BV, Sevenum, Netherlands

Malvern Instruments GmbH, Herrenberg

Marienhospital Bottrop gGmbH, Bottrop

MAN Ferrostaal AG, Essen

Mark-E AG, Hagen

MAN Turbo AG, Oberhausen

Marien-Hospital gGmbH, Wesel

Macq Electronique S.A.-N.V., Brussels, Belgium Mainova AG, Frankfurt a. M.
Names, Data, Events Selected Clients and Contacts

Mehldau & Steinfath Umwelttechnik GmbH, Essen Melitek A/S, Alslev, Denmark Membrana GmbH, Wuppertal Messe Frankfurt GmbH, Frankfurt a. M. Messer Griesheim GmbH MGT Maschinen- und Gerätebau GmbH, Groß Wokern Microdyn-Nadir GmbH, Wiesbaden MinerWa Umwelttechnik GmbH, Gmunden Mingas-Power GmbH, Essen Ministerium für Arbeit und Soziales, Qualifikation und Technologie des Landes NRW, Düsseldorf

Masterflex AG, Gelsenkirchen

MAT-TEC Engineering GmbH, Willich

Ministerium für Innovation, Wissenschaft, Forschung und Technologie des Landes NRW, Düsseldorf

Ministerium für Wirtschaft, Mittelstand und Energie des Landes Nordrhein-Westfalen, Düsseldorf

Modernbau GmbH, Saarbrücken

Momentive Performance Materials Holding Inc., Leverkusen

MSA AUER GmbH, Berlin

mtm plastics GmvH, Niedergebra

MVA Bielefeld-Herford GmbH, Bielefeld

MVV Energie AG, Mannheim

Ν

NanoFocus Meßtechnik GmbH, Duisburg

National-Bank AG, Oberhausen

Nature Environmental Worldwide Technologies GmbH, Dortmund

Neumann Krex & Partner - Ingenieurbüro für Brandschutz und Baukosten GmbH. Nietetal

Neurochirugisches Zentrum der Uni Klinik Bonn, Bonn

newtec GmbH, Dortmund

NovoPlan GmbH Oberflächen- und Werkstofftechnik, Aalen

NRW.BANK, Düsseldorf

nv VAM, Wijster, Netherlands

0

O₂ (Germany) GmbH und Co. OHG, München

Oerlemans Plastics B.V., Genderen, Netherlands o.m.p. Optische Meß- und Prüftechnik GmbH,

Bochum

Omega Minerals Germany GmbH, Norderstedt Optilan UK Limited, Warwick, England

Oschatz GmbH, Essen

Ostendorf Biogasanlage GmbH, Südlohn

Osterhuber Agrar GmbH, Gut Ferdinandshof, Wilhelmsburg

Osterhuber Königsholland GbR, Wilhelmsburg OTTO QUAST Fertigbau Lindenberg GmbH & Co. KG, Freudenberg

co. ko, m

Р

- Paracelsus-Klinik der Stadt Marl, Marl
- Parker Hannifin GmbH & Co. KG, Kaarst PBO Projektentwicklungs- und Beteiligungs-
- gesellschaft Oberhausen mbH, Oberhausen
- Pergan Hilfsstoffe für industrielle Prozesse GmbH, Bocholt

Pfleiderer Invest Veranlagungs GmbH, Vienna, Austria Philips Medizin Systeme GmbH, Hamburg PLAMA Plastic-Maschinen GmbH, Haan Playmobil Malta LTD, Malta Polyplast Müller GmbH, Straelen Pressko AG, Artern Privatbrauerei Moritz Fiege GmbH & Co. KG, Bochum Pro Asia Consulting Office, Oberhausen pro2 Anlagentechnik GmbH, Willich Prof. Heinz Breuer, Grefrath Prosper-Hospital gem GmbH, Recklinghausen Protein und Energie Soltau GmbH, Soltau PUR-Technologie Hegemann, Essen

R

Raedlinger Maschinen- und Anlagenbau GmbH, Cham-Windischbergerdorf RAG Verkauf GmbH. Essen Ralf Hacker Edelstahl Sonderanfertigung, Hüllhorst RATIONAL Technische Lösungen GmbH, Rostock Reisner GmbH, Holzwickede **REKOPLAN GmbH Management & Projekt**, Lobenstein Remondis AG & Co. KG, Lünen Reuschel-Systemtechnik-GmbH, Büren Rhein-Plast GmbH, Bad Dürkheim Robert Bosch GmbH, Stuttgart Ronald Hegemann, Hattingen rpm rapid product manufacturing GmbH, Helmstedt Rubber Ressource B.V., Maastrich, Netherlands Rubotherm Praezisionsmesstechnik GmbH, Bochum Rügenwalder Mühle Carl Müller GmbH & Co. KG, Bad Zwischenahn Ruhr-Universität Bochum, Fakultät für Maschinenbau, Lehrstuhl für Verfahrenstechnische Transportprozesse, Bochum RWE Power AG, Essen RWTH Aachen, Aachen RWTÜV AG, Essen Rytec GmbH, Frankfurt a. M.

)

S. & S. Plastics Ltd, Nottinghamshire, Great Britain

- Sachtleben Chemie GmbH, Duisburg
- Safibra Sro, Ricany, Czech Rebublic

Sahnemolkerei H. Wiesehoff GmbH, Schöppingen

Schering Africa GmbH, Berlin

Schöttler Bauunternehmung GmbH & Co. KG, Rees

- Schüttgutveredelung Noll GmbH, Bobingen
- SEG Umwelt-Service GmbH, Mettlach
- Sesterhenn Energiedienstleistungen, Titz

SET 2000 GmbH, Oberhausen Silcarbon Aktivkohle GmbH, Kirchhundem

SILOXA Engineering AG, Essen

SMS Mevac GmbH, Essen

SOLARC Innovative Solarprodukte GmbH, Berlin SOLution Solartechnik GmbH, Sattledt,

Austria

Solvay Barium Strontium GmbH, Hanover Solvay Fluor GmbH, Hanover Solvent Innovation GmbH, Cologne Spezialitäten-Käserei Saputo GmbH, Heiden Spreerelast AG & Co. KG, Vetschau/Spreewald SPX Cooling Technologies GmbH, Ratingen Staatskanzlei des Landes NRW. Düsseldorf Stadt Duisburg Stadt Frankfurt a. M. Stadt Moers Stadt Oberhausen Stadt Pfaffenhofen a. d. Ilm Stadt Rheine Stadt Schwabach Stadt Teterow Stadt Vaihingen an der Enz Stadtentwässerung Hann. Münden, Hann. Münden Stadtsparkasse Oberhausen Stadtwerke Annaberg-Buchholz Energie AG Stadtwerke Bochum GmbH Stadtwerke Dinslaken GmbH Stadtwerke Duisburg AG Stadtwerke Flensburg GmbH Stadtwerke Gießen AG Stadtwerke Herne AG Stadtwerke Kiel AG Stadtwerke Strausberg GmbH Stadtwerke Worms Holding GmbH Standard-Kessel Gesellschaft Lentjes-Fasel GmbH & Co. KG, Duisburg Stenau Entsorgungs- und Kreislaufwirtschaft GmbH & Co. KG, Ahaus SteriPack Ltd, Co. Offaly, Ireland Stiftung für Deutsch-Polnische Zusammenarbeit, Warszawa Poland Stiftung Liebenau, Meckenbeuren

Stockhausen GmbH & Co. KG, Krefeld St.-Marien-Hospital, Lünen

St. Johannes Hospital, Dortmund

- St. Vinzenz Hospital, Dinslaken
- Südwestdeutsche Salzwerke AG, Heilbronn
- SunTechnics Bioenergy GmbH, Willich
- swb AG, Bremen

1

Technamation Technical Europe GmbH, Aachen Technische Universität Bergakademie Freiberg, Freiberg Technische Werke Ludwigshafen am Rhein AG, Ludwigshafen a. R. Technolicence AG, Mägenwil, Switzerland Technopool Schwimmbadtechnologie GmbH, Osnabrück Toho Tenax Europe GmbH, Heinsberg Theodor Heimeier Metallwerk GmbH, Erwitte Thermoprozess Wärmebehandlungsservice GmbH, Mülheim an der Ruhr ThyssenKrupp Real Estate GmbH, Essen ThyssenKrupp Steel Beteiligungen GmbH, Duisbura TODA Kogyo Europe GmbH, Düsseldorf Tokyu Home Corporation, Tokyo, Japan Tönsmeier Dienstleistung GmvH & Co KG, Porta Westfalica Tree Entertainment AG, Munich Trianel Power Kraftwerk Hamm-Uentrop GmbH & Co. KG Tricat Zeolites GmbH, Bitterfeld TÜV Süd Industrie Service GmbH, Standort

Mönchengladbach TÜV Nord Cert GmbH, Essen 109

Names, Data, Events Selected Clients and Contacts/Patents

U Uhde GmbH, Dortmund Uhde High Pressure Technologies GmbH, Hagen Umweltbundesamt, Dessau Unidad de desarollo technologico de la universidad de concepción, Chile Universität Dortmund, Dortmund Universität Duisburg Essen, Lehrstuhl für Umweltverfahrenstechnik und Anlagentechnik, Essen Universität Göttingen, Göttingen

Universität Stuttgart, Stuttgart

Universität zu Köln, Institut für Physikalische Chemie, Cologne

Urenco Deutschland GmbH, Jülich Uwe Glien, Berlin

V

Verbandsgemeindewerke Montabaur, Montabaur Verein Deutscher Ingenieure e. V. (VDI), Düsseldorf Verein für ZukunftsEnergie-Systeme, Saarbrücken Verein zur Förderung der Energie- und Umwelttechnik e. V. - VEU, Duisburg

Verein zur Förderung der Umwelt-, Sicherheitsu. Energietechnik e. V., Oberhausen Veritas Medizintechnik GmbH, Halberstadt

VIKING GmbH, Langkampfen Vodafone D2 GmbH, Düsseldorf Volkswagen AG, Wolfsburg voltwerk AG, Hamburg Vorwerk Elektrowerke GmbH & Co. KG, Wuppertal

110

W Wacker Chemie AG, Munich WAGRO Systemdichtungen GmbH, Dortmund Weber & Schaer GmbH & Co. KG, Hamburg WEHRLE WERK AG, Emmendingen Weichkäserei Altenburger Land GmbH & Co. KG, Lumpzig WEKA MEDIA GmbH & Co. KG, Kissing Wendt GmbH, Meerbusch Werkhof gem. GmH, Hagen Westfalia Separator AG, Oelde WETEC Elektrotechnik GmbH, Moers wf plastic GmbH, Lüdenscheid WIKA Alexander Wiegand GmbH & Co. KG, Klingenberg a. M. Wirtschaftsministerium des Landes Mecklenburg-Vorpommern, Schwerin Wissenschaftspark Gelsenkirchen GmbH, Gelsenkirchen Witkenkamp u. DeLucia GmbH, Ahlen WLV-Service GmbH, Münster

Wuppertal Institut für Klima Umwelt Energie GmbH, Wuppertal

Ζ

ZEITEC - Software GmbH, Hagen
Zeochem AG, Uetikon Am See
Zeppelin Baumaschinen GmbH, Achim
Zschimmer & Schwarz GmbH & Co. KG Chemische Fabriken, Lahnstein
Zweckverband Abfallbeseitigung Mülldeponie Kahlenberg, Ringsheim

Patents 2006

Jussed Patents:

Biodegradable, mechanically strong, food-compatible composition, useful e.g. for producing cutlery or tableware by extrusion or injection molding, comprising cellulose ester, plasticizer and inorganic filler (Kern, Kesselring, Dolfen, Zimmermann*, An-

genheister*, Breuer*) – Germany

Sealing system (Berger*, Wack, H.) – Germany

Method for the production of an adsorption material, adsorption material as well as the use thereof (Sohnemann, Horn, Bertling, R., Meller) – Germany

Method and device for cleaning used bulk bags or the like (lxkes*) – Europe

* = external inventors

Registered trademarks:

BohrLock (word trademark)

Names, Data, Events

Spin-offs Circle of Friends and Patrons

Spin-offs

AIROX GmbH, Alpen Systems for oxygenation

www.airox.de

Andreas Schröder IT-Consulting GmbH, Schermbeck

Counseling and service in the area of information and telecommunication technologies

A-TEC Anlagentechnik GmbH, Duisburg

Innovative solutions concerning coal mine gas; hazard prevention: analyses, extraction, safety concepts; utilization for power and heat generation: energy concepts, design and operation of plants www.atec.de

DataPool Engineering GmbH,

Oberhausen Software development, system analyses, EDP-consulting www.dp-e.de

Emissions-Trader ET GmbH, Alpen Emissions trading www.emissions-trader.de

FKuR Kunststoff GmbH, Willich

Innovative solutions concerning plastics and recycling; comminution technology; extrusion, injection molding; elastomer recycling; material analyses; test technology; recycling concepts www.fkur.de

IDESYS Ingenieurgesellschaft für dezentrale Energiesysteme mbH, Oberhausen

Planning, development, production, installation of local energy systems and plants www.idesys.de

VENTAX Big-Bag Network GmbH & Co. KG, Willich

Big-Bag cleaning facilities, reusable Big-Bag, packaging systems www.ventax.de

WAGRO Systemdichtungen GmbH, Dortmund

Swellable polymere seals; sewer and building refurbishment; consultation, planning, and implementation; development and production of sealing systems (area of application: engineering and pipeline construction)

www.wagro-systemdichtungen.de

UMSICHT Circle of Friends and Patrons

Members of the UMSICHT Circle of Friends and Patrons

- AGR GmbH
- AVIT GmbH
- Buchhandlung und Verlag K.-M. Laufen
- DECHEMA e.V.
- Energieversorgung Oberhausen AG
- Fernwärme Forschungsinstitut in Hannover e.V. FFI
- Fernwärmeversorgung Niederrhein GmbH
- FITR e.V.
- FKuR GmbH
- Heine Gesellschaft für schlüsselfertiges Bauen mbH

- KonnexX Unternehmensberatungsgesellschaft mbH
- Loick AG
- LÜNTEC Förderverein e.V.
- National-Bank AG
- PUR-Technologie-Hegemann
- Sesterhenn Energiedienstleistungen Titz
- Stadtsparkasse Oberhausen
- Verein zur Förderung der Energie- und Umwelttechnik e.V.
- WAGRO Systemdichtungen GmbH

Membership in the UMSICHT Circle of Friends and Patrons »Verein zur Förderung der Umwelt-, Sicherheits- und Energietechnik e.V.« (UMSICHT-Circle of Friends and Patrons)

Osterfelder Strasse 3 • 46047 Oberhausen • Germany Phone +49 2 08/85 98-0 • Fax +49 2 08/85 98-12 90 The UMSICHT Circle of Friends and Patrons supports measures that strengthen the role of Fraunhofer UMSICHT in the R&D market and supports projects by providing ideas and financial assistance. As a result, established and new businesses receive access to competitive and sustainable technology developments.

○ Yes, I am interested in the UMSICHT Circle of Friends and Patrons. Please send me additional information.

111

How to Find us

By car

112

Freeway A42

Exit Oberhausen-Osterfeld/Neue Mitte. Go straight forward onto Osterfelder Strasse. Follow Osterfelder Strasse towards "Neue Mitte Oberhausen" or "Oberhausen-Zentrum/Essen" respectively. After approximately 1.5 kilometers (behind the sign "Fraunhofer UMSICHT") turn left into the access road to the institute.

coming from Duisburg:

Exit Oberhausen-Osterfeld/Neue Mitte. Turn right at the end of the exit onto Osterfelder Strasse towards "Neue Mitte" or "Oberhausen-Zentrum/ Essen" respectively. To continue please follow the instructions above.

Freeway A40

coming from Dortmund:

Exit Mülheim-Dümpten. Turn right at the end of the exit. At the next intersection turn left onto Mellinghofer Strasse and at its end turn left onto Essener Strasse. At the next major intersection turn right onto Osterfelder Strasse. At the first traffic lights turn right into the access road to the institute.

coming from Duisburg:

Exit Mülheim-Dümpten. Turn left at the end of the exit. At the next intersection turn left onto Mellinghofer Strasse. To continue please follow the instructions above.

By train

From Oberhausen central station either with bus number 185 (towards Essen Borbeck Bf.) to Fraunhofer UMSICHT, 957 (towards Oberhausen Sterkrade Bf.) or 958 (towards Oberhausen Spechtstraße), exit at the stop "UMSICHT".

By plane and train/car

From Düsseldorf Airport terminal A/B/C take the Sky Train to Düsseldorf Airport Station, then change into the Regional Express to Oberhausen central station. To continue see: By train

or if you are traveling by car take Freeway A 44 from the airport till you reach intersection "Düsseldorf-Nord". Take freeway A 52 (direction Essen/Oberhausen). At intersection "Breitscheid" change onto freeway A 3 and keep going until you get to intersection "Oberhausen West"; From there turn onto freeway A 42 (direction "Dortmund") and take the exit "Oberhausen-Osterfeld/Neue Mitte"; to continue see: by car.

Adress

Fraunhofer Institute for Environmental, Safety, and Energy Technology UMSICHT

Director: Prof. Dr.-Ing. Eckhard Weidner Deputy Director: Dr.-Ing. Görge Deerberg

Osterfelder Strasse 3 46047 Oberhausen Germany

Phone:	+ 49 2 08/85 98 -0
Fax:	+ 49 2 08/85 98 -12 90
Website: F-mail:	www.umsicht.fraunhofer.de

Your way to us online:

www.umsicht.fhg.de/profil/anfahrt/index.php

Guidelines

Guidelines

The guidelines of the organization "Fraunhofer UMSICHT" describe the basic self-conception of the Institute and its staff. Therefore, they are kept in a general form and build a frame which is to be completed and acted out but which also is to be advanced.

Guidelines are to bring continuity and stability into dynamically changing requirements of environment and daily routine. They are to accompany the institute's work beyond office hours and are to be communicated inside and outside the institute. Thus, mission, policies, and expectations the institute operates with and wants to be perceived with in its surroundings with are reflected in the guidelines.

The ten guidelines of the organization "Fraunhofer UMSICHT" are deduced from the regulations and guidelines of the "Fraunhofer Gesellschaft" and concretize them for the concerns of the institute's work.

- Fraunhofer UMSICHT sees itself as a link between its business partners, staff members, the "Fraunhofer Gesellschaft", the scientific community, and other social actors.
- Fraunhofer UMSICHT wants to be a reliable research and development partner for its clients, relieve them during all project phases, give them all respective services from one hand, and support them in accessing subsidies and commercial funding.
- Fraunhofer UMSICHT offers its clients highquality scientific, results-oriented, interdisciplinary, and innovative research and development work. It provides them with competitive advantages through advance in knowhow and recognized competence in problem solving.
- 4 The staff members form the institute's backbone. Fraunhofer UMSICHT encourages and challenges the staff's professional, scientific, entrepreneurial, and social skills. These skills determine the institute's efficiency. Fraunhofer UMSICHT wants to fill its staff with enthusiasm for research and development.
- 5 Fraunhofer UMSICHT acts according to the principles of the "Fraunhofer Gesellschaft" and contributes to enhancing the reputation of the "Fraunhofer Gesellschaft". The institute cooperates in partnership with the board of directors, headquarters, and other Fraunhofer institutes and facilities.
- 6 Fraunhofer UMSICHT is actively committed to the formation of strategic alliances and networks in economy, science, politics, and society.
- Fraunhofer UMSICHT forces up activities abroad in respect of project work and exchanging staff members (know-how transfer).

- 8 Fraunhofer UMSICHT acts actively in the scientific community. The institute cooperates with other research facilities, universities, technical colleges, and industrial partners in the national and international research and development scene, and faces up to scientific debate.
- Fraunhofer UMSICHT is independent. It supports clear, understandable, and interdisciplinary consolidated positions and aligns its objectives according to these positions. Fraunhofer UMSICHT aims at a long-term realization of social visions through concrete innovations which can be efficiently transfered into economically utilizable progress and can be transfered into the environment.
- O Fraunhofer UMSICHT sees itself as a pathfinder for technical changes in the areas of environment, energy, process engineering, and safety. The institute promotes effective management, environmentally friendly technologies, and environmentally conscious behavior in order to enhance society's overall quality of life.

The Fraunhofer-Gesellschaft

The Fraunhofer-Gesellschaft

The Fraunhofer-Gesellschaft

Research of practical utility lies at the heart of all activities pursued by the Fraunhofer-Gesellschaft. Founded in 1949, the research organization undertakes applied research that drives economic development and serves the wider benefit of society. Its services are solicited by customers and contractual partners in industry, the service sector and public administration. The organization also accepts commissions from German federal and Länder ministries and government departments to participate in future-oriented research projects with the aim of finding innovative solutions to issues concerning the industrial economy and society in general.

Applied research has a knock-on effect that extends beyond the direct benefits perceived by the customer: Through their research and development work, the Fraunhofer Institutes help to reinforce the competitive strength of the economy in their local region, and throughout Germany and Europe. They do so by promoting innovation, accelerating technological progress, improving the acceptance of new technologies, and not least by disseminating their knowledge and helping to train the urgently needed future generation of scientists and engineers.

As an employer, the Fraunhofer-Gesellschaft offers its staff the opportunity to develop the professional and personal skills that will allow them to take up positions of responsibility within their institute, in other scientific domains, in industry and in society. Students working at the Fraunhofer Institutes have excellent prospects of starting and developing a career in

industry by virtue of the practical training and experience they have acquired.

At present, the Fraunhofer-Gesellschaft maintains more than 80 research units, including 56 Fraunhofer Institutes, at 40 different locations in Germany. The majority of the 12,500 staff are qualified scientists and engineers, who work with an annual research budget of €1.2 billion. Of this sum, more than €1 billion is generated through contract research. Two thirds of the Fraunhofer-Gesellschaft's contract research revenue is derived from contracts with industry and from publicly financed research projects. Only one third is contributed by the German federal and Länder governments in the form of institutional funding, enabling the institutes to work ahead on solutions to problems that will not become acutely relevant to industry and society until five or ten years from now.

Affiliated research centers and representative offices in Europe, the USA and Asia provide contact with the regions of greatest importance to present and future scientific progress and economic development.

The Fraunhofer-Gesellschaft is a recognized non-profit organization which takes its name from Joseph von Fraunhofer (1787-1826), the illustrious Munich researcher, inventor and entrepreneur.

Board of Trustees – Fraunhofer UMSICHT

Trustrees

Ernst Gerlach Chairman (NRW.BANK, Member of the board, Düsseldorf)

Hubert Loick Deputy Chairman (Loick AG, Chairman of the board, Dorsten)

Burkhard Drescher (GAGFAH/NILEG Immobiliengruppe, CEO, Chairman of the Management, Essen)

Dr. Jochen Hamatschek (Westfalia Separator Food Tec GmbH, Managing Director, Oelde)

Prof. Dr.-Ing. Helmut Hoyer (FernUniversität in Hagen, Rector, Hagen)

Dr.-Ing. Harald Irmer (Environment Agency NRW, President, Essen)

Dr.-Ing. Gerd Jäger (RWE Power AG, Member of the board, Essen)

Dr.-Ing. Karl-Ulrich Köhler (ThyssenKrupp Steel AG, Chairman of the board, Duisburg)

Dr.-Ing. Thomas Mathenia (Energieversorgung Oberhausen AG, Member of the board, Oberhausen)

Prof. Dr.-Ing. Thomas Melin (RWTH Aachen, Head of Chair I and the Institute of Process Engineering of RWTH Aachen, Aachen)

Prof. Dr.-Ing. Volker Pilz (Bayer AG, Director for Security of Site Services/retired since 8/2002, Leverkusen)

Dr. rer. nat. Franz-Josef Renneke (Schering AG, Plant Manager, Bergkamen)

Prof. Dr.-Ing. Viktor Scherer (Ruhr-University Bochum, Faculty of Mechanical Engineering, Dean, Bochum)

Dr.-Ing. Andreas Schütte (Agency of Renewable Resources [FNR] e.V., Managing Director, Gülzow)

Ernst Schwanhold (BASF Aktiengesellschaft, Head of the Competence Center Environment, Energy and Safety Technology, Ludwigshafen)

Udo Völker (MAN Ferrostaal AG, Chief Representative, Essen)

Imprint

The Directorate

Director: Prof. Dr.-Ing. Eckhard Weidner

Deputy Director: Dr.-Ing. Görge Deerberg

Editing and publishing: Fraunhofer Institute for Environmental, Safety, and Energy Technology UMSICHT Osterfelder Strasse 3 46047 Oberhausen Germany

Phone + 49 2 08/85 98 -0 Fax + 49 2 08/85 98 -12 90

Website www.umsicht.fraunhofer.de E-mail info@umsicht.fraunhofer.de

Editing:

Iris Kumpmann (responsible) Dr.-Ing. Hartmut Pflaum

Proof-reading:

Manuela Rettweiler Ursula Müller Dr. rer. nat. Joachim Danzig

Layout and illustration:

Barbara Vatter Daniel Streilein Sarah Heidebroek

Printed by:

Zelle – Der Printspezialist, Düsseldorf

Sources of photographies:

Cornpack GmbH & Co. KG: p. 36 Turbec R&D AB: p. 80 Gaswärme-Institut, Essen: p. 81 BINE Informationsdienst: p. 93 www.photocase.com: p. 8, p. 10-12, p. 23-25, p. 27, p. 46-47, p. 66, p. 70, p. 88, p. 92, p. 98, p. 104 www.photosforfree.de: p. 61 www.aboutpixel.de: p. 26 all other photographies: © Fraunhofer UMSICHT

Copyright: © Fraunhofer UMSICHT

All rigths reserved.

Use of photographies, graphics and texts in any form – even in extracts – only by previous written permission by Fraunhofer UMSICHT