

L-0/L-II | Studies of methanol synthesis by varying reaction parameters

Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim a. d. Ruhr, Germany Julian Schittkowski*, Christian Froese, Christoph Göbel, Jiayue He, Robert Schlögl, Holger Ruland *Phone +49 208 8598-1346, *Julian.Schittkowski@cec.mpg.de

A promising way to benefit from exhaust gases is the conversion of CO₂ into methanol, which is a highly investigated process in industry using the $Cu/ZnO/Al_2O_3$ catalyst [1, 2]. Based on this well-known process, the challenge for using steel mill exhaust gases as raw material is to deal with the impact of dynamic process parameters (p_{gas} , T, p, \dot{V}) and the effect of impurities, which could reduce or even prevent an economically sufficient productivity.

1. Experimental – catalyst and setup parameters

- Methanol synthesis was investigated in different setups
- Catalyst used: Cu/ZnO/Al₂O₃, provided by Clariant
- Operation modes for testing:
 - temperature range of 170 °C up to 260 °C
 - pressures of 30 bar to 60 bar and
 - feed gas of CO, CO₂, H₂ and N₂ as well as additional gases necessary for testing (e.g. O_2)

3. Dynamic reaction conditions

- Making "green" hydrogen usable, renewable resources will cause fluctuations of the supply \rightarrow intermitting process conditions affect CO₂ hydrogenation activity
- Fluctuating parameters: T, \dot{V} and p_{H_2} at 250 °C, 30 bar
- No effect on the overall stability of the catalyst

a) Example of dynamical operation of MeOH synthesis; b) Normalized STY of MeOH during 500 h TOS with intermitting conditions of T, V, p_{H_2} (slow, fast) [3].

2. Benchmark study

- Performing predefined benchmark for a high comparability
- Equally chosen reaction parameters were monitored over 100 h TOS at 250 °C and 50 bar at given partial pressures
- Normal aging during TOS with a general deviation of X_{CO2} < 3 % leads to consistent data across all setups

Normalized conversion of CO_x during 100h TOS. Benchmark conditions: 250 °C and 50 bar.

4. Deactivation effects of co-feeded O₂

- Limited load of the catalysts with trace substances is required to design necessary purification steps
- Co-feeding impurities while monitoring the activity in methanol synthesis
- O₂ traces act as irreversible (50 bar) catalyst poison on the long-term.

Continuous dosing of 0.06 % O_2 at 250 °C and 50 bar for 108 h. Normalized X_{COx} values (black) and H_2O concentrations (blue) [4].

- [1] F. Asinger, Methanol Chemie- und Energierohstoff, Akademie-Verlag, Berlin, 1986.
- [2] Methanol: The Basic Chemical and Energy Feedstock of the Future,
- Springer-Verlag, Berlin Heidelberg, 2014.
- [3] H. Ruland et al., ChemCatChem 2020, 3126. [4] J. He et al., Chem. Ing. Tech. 2020, 1525.

SPONSORED BY THE

